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SYMMETRY AND GROUP THEORY 

Group Theory is a mathematical method by which aspects of a molecules 

symmetry can be determined. It is found in geometrical figures such as a cube, a sphere, 

an equilateral triangle, a rectangle, a square, a regular pentagon, a regular hexagon etc. 

The symmetry of a molecule reveals information about its properties (i.e., structure, 

spectra, polarity, chirality, etc…)  

Symmetry Operations/Elements 

A molecule or object is said to possess a particular operation if that operation 

when applied leaves the molecule unchanged.  

Each operation is performed relative to a point, line, or plane - called a symmetry 

element. 

 For example consider water molecule. The two hydrogen atoms of H2O are 

equivalent. 

 

H2O molecule after rotation by 180o with respect to z - axis has a configuration(II) 

indistinguishable from the original configuration (I). I and II are not identical. The 

hydrogen atom on the left hand side of configuration I is on the right hand side in II. As a 

result of this operation an atom in the body of the molecule has taken up the position of 

an equivalent atom in the molecule, i.e. two equivalent atoms have exchanged their 



DR. S. VALARSELVAN, Ph.D Page 2 
 

positions. Thus I and II match perfectly well. If we rotate by 90o the new configuration 

does not match with the original one. Thus rotation by 90o is not a symmetry operation 

for H2O. 

The various symmetry operations that can be performed on an object or molecule 

may be listed in Table -  1. 

Table : 1 

SYMMETRY OPERATION SYMBOL SYMMETRY ELEMENTS 

1.Identify 

2.Rotation 

3.Refection 

4.Improper rotation 

 

 

5.Inversion 

E 

Cn 



Sn 

 

 

i 

Does not arise. 

Axis of symmetry(a line). 

Plane of reflection(a plane). 

Rotation (Cn) about an axis and 

reflection with respect to the plane 

perpendicular to the rotational axis. 

Centre of symmetry. 

 

1. IDENTITY: 

 Identity  is the operation of not doing anything. When we do not  do anything we 

leave the system unchanged and identical to the original system in all respects .It is 

denoted by the symbol E. 

  2. Rotation  about an axis (Cn ) 

              If  Ө  is the smallest angle by which we rotate the obiect with respect to an axis 

and get an indistinguishable configuration the rotation is referred to as a symmetry 

operation Cn. Symbol C stands for rotation  which means making a circular rotation about 
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an axis. We have to do n rotations sucessively to get a full circle and  hence the subscript 

n, where n =  2π/Ө   and is called order of the symmetry axis. If there are Cn  axis of 

different orders in a molecule, the axis with the highest order is referred to as the 

principal axis. For example, in boron trichloride molecule an axis of symmetry is located 

perpendicular to the plane containing all the atoms. This is known as the C3 axis of 

symmetry. Boron trichloride  molecule has three C2 axes of symmetry in addition to the 

C3 axis (Fig 1). The C3 axis in this molecule is known as the principal axis 

                                                                    

 

           As a second example we shall take a regular hexagon eg. benzene. The axis 

perpendicular to the plane (z - axis ) is a C6Z  axes.  There are other rotational axes also 

(Fig 2 ). Performing C6Z  twice , thrice, etc are also symmetry operations. They are  
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designated as C2
6Z, C3

6Z etc. Besides these, there are other axes which lie in the plane of 

benzene. They are AD, BE. CF and PQ, MN  and RS. These are C2 axes. Note that the 

highest order axis is the C6 axis .  

        For a linear molecule like ABC or AB rotation around its inter nuclear axis by any 

angle is a symmetry operation . The minimum angle being infinitesimally small, this 

would be Cα operation.  

We can perform rotations several times. If we perform Cn operation m times 

successively we call it a Cn
m operation.  

     It is obvious that  

                           C2
2z     =   E;    Cn

n     =   E for any n  

   C2
6     =    C3 
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Thus successive application of the same symmetry operation leads to new 

symmetry operations  

  If  rotation by  3600/n  in a clockwise fashion is a symmetry operation Cn, rotation 

by the same angle in anticlockwise direction  is labeled as Cn
-1. Using Cn and Cn

-1 

successively is equivalent to identity, as Cn
-1 restores the molecule to the original position 

after Cn has been performed. 

        That is Cn
-1   Cn = E  

3. Reflection (σ) 

A plane which bisects a molecule into two halves so that one is exactly the mirror 

image of the other is a reflection plane. 

The angular water molecule has a reflection plane passing through the oxygen 

atom and another one containing all the atom (Fig 3). The plane containing all the atoms 

is called as molecular plane. 

 

The Square planar complex ion [PtCl4]
2- contains a molecular plane and four more 

reflection planes. Fig4. 
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The reflection planes can be classified into three types based on their relation with 

the principal axis. A plane is referred to as horizontal plane (σh) if it is perpendicular to 

the principal axis. A reflection plane which contains the principal axis is called as vertical 

plane(σv). A vertical plane which bisects two perpendicular  C2 axes is called a dihedral 

plane(σd). 

           Doing σ twice successively, σ . σ = σ2  is equivalent to doing nothing. In the case 

of water, doing a σ twice leads to a configuration identical in all respects with the original 

(Fig 5) Obviously this is true of all molecules and hence we have the general relationship 

σ2 =E. 
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4. Improper rotation(Sn) 

            It is a process of rotation (Cn) followed by reflection in a plane perpendicular to 

the axis of rotation (σ). Fig 6 shows the  S6 axis in staggered form of ethane. 

 

Note that in Fig 6, C6 is not a symmetry operation but σC6=S6 is a symmetry 

operation. 

     Also σCn  = Cnσ since  these two operations commute. It is easily seen S6 
2 =  C3  

S6 
2 = (σC6). (σC6).  Since  σ and   C6 commute. 

We have S6 
2 = C6 σ  σ  C6  = C6  E  C6   = C6 

2 = C3                 [σ
2 =E]  

Similarly S6 
4 =  C3 

2 
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5. Inversion (i) 

In molecule like that in Fig (7), if we join any atom to the centre of the molecule 

and extend the line on the other side by the same distance we meet a similar atom. 

Molecules where atoms are geometrically arranged in this manner are said to possess a 

centre of symmetry or inversion centre. Inversion is a symmetry operation for such 

molecules. 

   

All homonuclear diatomic molecules possess the centre of symmetry. 

 

GROUP 

A group is a collection of elements which are interrelated according to certain 

rules. The symmetry operations of a molecule form a group. 

Rules of the group :- 

                 In order for any set of elements to form mathematical group the following 

rules must be satisfied. 

1. The product of any two elements in the group and the square of each element must be  

     an element in the group. 
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2. One element in the group must commute with all others and leave them unchanged. 

3. The associative law of multiplication should be valid. 

4. Every element must have a reciprocal, which is also an element of the group. 

Rule 1: 

  If A and B are the elements of the group and if AB=C, C must be a member of the 

group. Usually AB ≠ BA and so C ≠ D. However there may be some special elements A 

and B such that AB=BA. Then A and B are said to ‘commute’ with each other or the 

multiplication of A and B is commutative. Such a group where any two elements 

commute is called an ‘abelian’ group. H2O belongs to an abelian group.  

Rule 2: 

 Each group must necessarily have an element which commutes with every other 

element of the group and leaves it unchanged. 

 Let A and B be the elements of the group. Let X be the element satisfying rule 2. 

i.e.  XA = AX = A  and also XB = BX = B 

       BA = BX2A; BX2 = B = BE, where we have set 

        X2 = E(identity)  

It is clear BEn = B, n being any integer. This kind of element E which does not 

effect any change when multiplied with any element, is a unique element and is called an 

identity operation E.  

Rule 3: 

 Associative law of multiplication must be valid. This means ABCD is the same as 

(AB) (CD), (A). (BCD) or (ABC) (D). ABC is the same as A(BC) or (AB) C. 

 

Rule 4: 
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 Inverse of an element A is denoted by A-1 (this does not mean 1/A). It is simply 

an element of the group such that A-1A = E. In the case of symmetry groups,   A-1  is   that 

element which undoes or annuls the effect of A.  For  H2O  we  have,  for example, C2C2 

= E. Therefore C2
-1 = C2  i.e. C2 is its own inverse. This is true of all other elements for 

H2O. But this is not general. Therefore C6
-1 is not C6. 

Abelian Group. 

               A group is said to be abelian if for all pairs of elements  of the group, the binary 

combination is commutative. That is AB=BA;  BC=CB and so on. 

Example: 

        The elements of   C2v  point group E, C2v,  σv, and σv’ form an abelian group as all 

the elements of this group commute with each other. Fig 3.7 illustrates the idea that the 

symmetry operation of water molecule obey the commutative law. C2
1 operation followed 

by  σv  operation leads to the configuration A.  σv operation followed by C2
1 leads to the 

same  configuration as shown in Fig 8. 
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Fig 8 diagram illustrating the idea that the symmetry operation of water molecule 

obey the commutative law of a group. 

 

Non Abelian Group. 

             A group is said to be non abelian if the commutative law does not hold for the 

binary combination of the elements of the group , i.e, AB ≠  BA. 

Example: 

                 The elements of C3v point group E, C3
1, C3

2, σv
1, σv

2
 and σv

3 do not constitute 

an abelian group. Since the elements do not follow commutative law. C3
1 operation 

followed by σv
1

  operation leads to the configuration A. σv
1

  operation followed by C3
1  

opreration leads to the configuration B. Fig 9 

 

Fig.9 Diagram illustrating the idea that the symmetry operations of Phosphine molecule 

do not obey the commutative law of the group. 

Sub Groups: 

  Any subset of a collection of elements which forms a group is called a sub group.              

The elements of a sub group should obey the following conditions: 
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  1. The elements should satisfy all the rules of the group. 

  2. If  h is the order of the group and g is the order of the sub group, then h/g is a natural   

      number. 

            There are four sub groups in water molecule.  

1. E 

      2.   E  and , C2
1 

      3.   E and σv 

      4.   E and σv’ 

Cyclic Group  

A group is said to be cyclic if all the elements of a group can be generated from 

one element.  A, A2, A3….. Ah form the element of of a cyclic group with Ah as the 

identity element . h refers to the total number of elements and is called the order of the 

group  

Trans 1,2 - dichlorocyclopropane and hydrogen peroxide are examples of 

molecules which possess symmetry operations corresponding to a cyclic group of order 

two. C2
1 and  C2

2  are the two symmetry operations present in them. Every cyclic group is 

Abelian but the converse is not true. The symmetry operations of trans-1,2 

dichlorocyclopropane  form an Abelian cyclic group, whereas the operations in water 

molecule form an Abelian group only.  

SIMILARITY TRANSFORMATION AND CLASSES 

  Let A and X be the elements of a group and let us define B such that  

    B = X-1  AX 

 B is called the similarity transform of  A by X,or  A is said to be subjected to 

similarity transformation with respect to X. If A and B are related by a similarity 
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transformation they are called “conjugate” elements. Take the NH3 molecule , for 

instance. Fig 10.  

 z - axis is the C3 axis. 

 There are three reflection planes. These are usually designated as follows  

1. Plane formed by z - axis and NHa bond:  σ’  

2. Plane formed  by z- axis and NHb bond: σ” 

3. Plane formed by z- axis and NHc bond: σ”’ 

Let us perform a reflection (σ’’’) with respect to the plane formed by NHc and  

z-axis. Let us perform σ again. σ ”’2  =  E  

Now let as find the similarity transform of C3 w.r.t σ”’, i.e., (σ”’)-1 C3  σ”’=? 

  It is seen from Fig 10 that   (σ”’)-1 C3 (σ”’)= C3
2 

Remember (σ”’)  = (σ”’)-1.  Thus C3  and C3
2  are conjugate elements.  

The following rules about conjugated elements are notable;  

1. Every element is conjugate of itself because every element is the 

similarity transform of itself  w.r.t. identity (E). 

 E = E-1 and A = E-1 AE  
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2. If A is the conjugate of B then B is the conjugate of A. This means that if A is the 

similarity transform of B by X,B is the similarity transform of A by X-1. We have  

 A = X-1 BX; 

But,  (X-1) -1A X-1  = XA  X-1  = X (X-1  BX) X-1 

 = (XX-1)  B(XX-1) = B (associative law) 

3. If A is the conjugate of B and B is the conjugate of C, then A,B and C are mutually 

conjugate.  

CLASS  

 A  complete set of elements which are conjugate to one another is called a class of 

the group  
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 Let us consider NH3 .  Set up the coordinate system in such a manner that ZNHa is 

in the yz plane. Fig 11 σ’ is then σyz. Without disturbing the NH3 molecule rotate the 

coordinate system by 120o w.r.t. z axis ., i.e., subject the coordinate system to C3. Now yz 

plane is ZNHb. σyz is σ”. σ’  and σ” are equivalent. σ’ becomes same  as that of σ” if we 

change the coordinate system by a symmetry operation (C3) of the point group. σ’ and σ” 

are therefore in the same class.  

Example  

The three reflections  of NH3 constitute a class.  

 It is not difficult to show that  C3
2 . C3 =E 

  Hence C3
2 = (C3)

-1 

Let us perform the similarity transformation of  σ’ by C3  in NH3 
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C3
-1 σ’ C3 . = C3

2 σ’ C3   =σ’’ 

Thus σ’ and σ’’ are conjugate. Similarly  we can show that σ’, σ’’ and σ’’’ are 

mutually conjugate. 

 Therefore σ’, σ’’, and σ’’’ form a class. 

 Order of a group can be shown to be an integral multiple of the number of 

elements in a class of the group. 

 

GROUP MULTIPLICATION TABLE  

 Every group is characterized by a multiplication table. The relationship between 

the elements of the binary combinations is reflected in the multiplication table.  

 Consider water molecule.  It has four symmetry elements, viz, E, C2(z),  σ v(xz) and  

σ v(yz) Fig 12 

 

Fig 12 The Four symmetry elements of H2O 

 We can easily show that the product of any two symmetry elements is one of the 

four elements of the group Thus for instance C2(z), σv(xz) = σ’v(yz) . Proceeding this way the 

symmetry operations of H2O can be listed in a group multiplication table. (Table3.) 
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E                        C2z                          σv(xz)                               σ’v(yz) 

E 

C2z 

σv(xz) 

σ’v(yz) 

 

E                        C2z                          σv(xz)                               σ’v(yz) 

C2z                                  E                            σ’v(yz)                   σv(xz) 

σv(xz)                    σ’v(yz)                   E                       C2z 

σ’v(yz)                  σv(xz)                   C2z                                    E 

 

 Table 3.  Group multiplication table of the symmetry operations of  H2O  

molecule.  

Important characteristics of a group multiplication Table. 

1. It consists of h rows and h columns where h is the order of the group. 

2. Each column and row is  labeled with group element  

3. The entry in the table under a given column and along a given row is the 

product of the elements which head that column and that row. 

4. At the intersection of the column labeled by X and the row labeled by Y we 

found the element which is the product  XY 

5. The following rearrangement theorem holds good for every group 

multiplication table,  

“Each row and each column in the table lists each of the group elements once and 

only once. No two rows may be identical nor any two columns be identical. Thus each row 

and each column is a rearranged list of the group elements”. 
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.  Group multiplication table of the symmetry operations of  NH3  molecule.  
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2
 E v

2
 v

3
 v

1
 

C3
2
 C3

2
 E C3 v

3
 v

1
 v
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v
1
 v

1
 v

2
 v

3
 E C3 C3

2
 

v
2
 v

2
 v

3
 v

1
 C3

2
 E C3 

v
3
 v

3
 v

1
 v

2
 C3 C3

2
 E 

 
Similarity transformation and  Classes in ammonia 

To determine the classes of symmetry operations for this point group.  Let’s start with the 

similarity transforms for the vertical mirror planes: 

v
1
v

1
v

1

1

  =  v
1

 

v
2
v

1
v

2

1

  =  v
3

 

v
3
v

1
v

3

1

  =  v
2
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It can be shown as given, how the similarity transformation takes place 

v
2
v

1
v

2

1

  =  v
3                                        

v
3
v

1
v

3

1

  =  v
2

 

 

 

 

 











 

C3v
1
C3

1
  =  v

3 
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If we continue these similarity transforms we find that the various symmetry 

operations for C3v break down into the following classes: 

    E 

    C3, C3
2
 

    v
1
, v

2
 , v

3
       

If we examine the character tables the symmetry operations are listed and grouped 

together in these very same classes: 

 

 

Matrix Representations of Symmetry Operations  

We will now use matrices to represent symmetry operations. Consider how an {x,y,z} 

vector is transformed in space. Any symmetry operation about a symmetry element in a 

molecule involves the transformation of a set of coordinates x, y and z of an atom into a set 

of new coordinates x’, y’ and z’. The two sets of coordinates of the atom can be related by a 

set of equations. This set of equations may also be formulated in matrix notation. Thus each 

symmetry operation can be represented by a specific matrix. A knowledge of the matrices of 

the  various operations in a molecule will be useful to solve structural problems in chemistry. 

For example, the symmetry of vibrational modes in molecules can be analysed using the 

matrices for the different operations.          
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Rotation  

Cn about the z axis 

 

Improper Rotations (Sn) 

Because an improper rotation may be expressed as σxy Cn we can write the  following 

since matrices also follow the associative law. 

 

The sum of the diagonal elements of a square matrix is called the trace or 

character of the matrix. The characters of the various matrices corresponding to the 

symmetry operations are listed in Table  
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Symmetry Operation Character of Matrix 

Identity 

Rotation 

Inversion 

Improper rotation 

Reflection 

3 

2 cos ф + 1 

-3 

2 cos ф -1 

1 

 

ф refers to the angle of rotation about the axis. 

REDUCIBLE AND IRREDUCIBLE REPRESENTATIONS 

 Matrix representations of symmetry operations can often be reduced into block 

matrices. Similarity transformations may help to reduce representations further. 

The goal is to find the irreducible representation, the only representation that can 

not be reduced further. 

 The same ”type” of operations (rotations, reflections etc) belong to the same 

class. Formally R and R’ belong to the same class if there is a symmetry operation 

S such that R’=S-1RS. Symmetry operations of the same class will always have the 

same character. 

 If a matrix representing a symmetry operation is transformed into block diagonal 

form then each little block is also a representation of the operation since they obey 

the same multiplication laws. 

 When a matrix can not be reduced further we have reached the irreducible 

representation. The number of reducible representations of symmetry operations 

is infinite but there is a small finite number of irreducible representations. 
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 The number of irreducible representations is always equal to the number of 

classes of the symmetry point group. 

 

 

 

GROUP REPRESENTATION AND CHARACTER TABLE 

The set of four matrices that describe all of the possible symmetry operations in 

the C2v point group that can act on a point with coordinates x, y, z is called the total 

representation of the C2v group. 

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

        
       

 
       
              

 

     E         C
2
      

xz
              

yz
 

 

Note that each of these matrices is block diagonalized, i.e., the total matrix can be 

broken up into blocks of smaller matrices that have no off-diagonal elements between 

blocks.  These block diagonalized matrices can be broken down, or reduced into simpler 

one-dimensional representations of the 3-dimensional matrix.  If we consider symmetry 
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operations on a point that only has an x coordinate (e.g., x, 0, 0), then only the first row of 

our total representation is required: 

If we consider symmetry operations on a point that only has an x coordinate (e.g., 

x, 0, 0), then only the first row of our total representation is required: 

C2v E C
2
 

xz
 

yz
  

Γ1 1 -1 1 -1 x 

 

We can do a similar breakdown of the y and z coordinates to setup a table: 

C2v E C
2
 

xz
 

yz
  

Γ1 1 -1 1 -1 x 

Γ2 1 -1 -1 1 y 

Γ3 1 1 1 1 z 

 

These three 1-dimensional representations are as simple as we can get and are called 

irreducible representations.  There is one additional irreducible representation in the C2v 

point group.  Consider a rotation Rz :The identity operation and the C
2

 

rotation operations leave the direction of the rotation Rz unchanged.  The 

mirror planes, however, reverse the direction of the rotation (clockwise to 

counter-clockwise), so the irreducible representation can be written as: 

 

C2v E C
2
 

xz
 

yz
  

Γ4 1 1 -1 -1 Rz 

 

4 Classes of symmetry operations = 4 Irreducible representations!! 
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Each irreducible representation of a group has a label called a symmetry species, 

generally noted Γ. When the type of irreducible representation is determined it is 

assigned a Mulliken symbol: 

One-dimensional irreducible representations are called A or B. 

Two-dimensional irreducible representations are called E. 

Three-dimensional irreducible representations are called T (F). 

The basis for an irreducible representation is said to span the irreducible representation. 

The difference between A and B is that the character for a rotation Cn is always 1 for A 

and -1 for B. 

The subscripts 1, 2, 3 etc. are arbitrary labels. 

Subscripts g and u stands for gerade and ungerade, meaning symmetric or antisymmetric 

with respect to inversion. 

Superscripts ’ and ’’ denotes symmetry or antisymmetry with respect to reflection 

through a horizontal mirror plane. 

 

 

CHARACTER  TABLE FOR AMMONIA 

Now lets consider a case where we have a 2-dimensional irreducible representation.  

Consider the matrices for C3v 
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In this case the matrices block diagonalize to give two reduced matrices.  One that 

is 1-dimensional for the z coordinate, and the other that is 2-dimensional relating the x 

and y coordinates.  Multidimensional matrices are represented by their characters (trace), 

the irreducible representations for the 1- (z) and 2-dimensional “degenerate” x and y 

representations:   

C3v E 2C
3
 3

v
  

Γ1 1 1 1 z 

Γ2 2 -1 0 x,y 

 

As with the  C2v example, we have another irreducible representation (3 symmetry 

classes = 3 irreducible representations) based on the Rz rotation axis.  This generates the 

full group representation table: 

C3v E 2C
3
 3

v
  

Γ1 1 1 1 z 

Γ2 2 -1 0 x,y 

Γ3 1 1 -1 Rz 
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CHARACTER TABLES (SOME OTHER EXAMPLES) 
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GREAT ORTHOGONALITY THEOREM 

 This theorem is concerned with the elements of matrices constituting the 

irreducible representations of a point group. Let us consider two irreducible 

representations i and j of a point group. Let li and lj be the dimensions of  these 

representations.  h is the order (total number of symmetry operatons) of the point group. 

R denotes a particular symmetry operation in the group. (Γi (R))mn is an element in the 

mth  row and nth column of a matrix in the i th irreducible representation. The complex 

conjugate of the element in the m’th row and n’th column of a matrix in the j th 

irreducible representation is denoted by (Γj(R))*m’ n’. the elements (Γi(R))mn  and 

(Γj(R))*m’ n’ are related to h, li and lj by the orthogonality theorem as follows: 

 

  '' ' '
*( ) ( )m m mmn n ni ij

i

nj

j

R R
l l

h
        

Γ
i
 (R)

mn
  The element in the m

th
 row and n

th
 column of the matrix 

corresponding to the operation R in the i
th

 irreducible 

representation Γ
i
.     

Γ
i
 (R)

mn

* 
complex conjugate used when imaginary or complex #’s are 

present (otherwise ignored) 

h      the order of the group 

l
i
 the dimension of the i

th
 representation 

(A = 1, B = 1, E = 2, T = 3) 

δ delta functions, = 1 when i = j, m = m’, or n = n’;  = 0 otherwise 
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The different irreducible representations may be thought of as a series of 

orthonormal vectors in h-space, where h is the order of the group.   

Because of the presence of the delta functions, the equation = 0 unless i = j, m = m’, or n 

= n’.  Therefore, there is only one case that will play a direct role in our chemical 

applications: 

  0' '( ) ( )
R

nm j m ni R R       if I ≠ j 

  0' '( ) ( )
R

nm j m ni R R       if m ≠ m’ n ≠ n’ 

  ( ) ( )
R

i inm nm

i

R R
l

h
    

Five “Rules” about Irreducible Representations: 

1) The sum of the squares of the dimensions of the irreducible representations of a 

group is equal to the order, h, of a group. 

2
il h  

 For example, consider the D
3h

 point group: 

 

l(A
1
’)

2
 + l(A

2
’)

2
 + l(E’)

2
 + l(A

1
”)

2
 + l(A

2
”)

2
 + l(E”)

2
 

(1)
2
 + (1)

2
 + (2)

2
 + (1)

2
 + (1)

2
 + (2)

2
   =  12 

h = 12 (order of group) 
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2) The sum of the squares of the characters in any irreducible representation 

is also equal to the order of the group h.   

  

2
( )i

R

R hg      

 For example, for the E’ representation in D
3h

: 

 (2)
2
 + 2(-1)

2
 +  3(0)

2
 +  (2)

2
 +  2(-1)

2
 +  3(0)

2
  =  12 

3) The vectors whose components are the characters of two different 

irreducible representations are orthogonal. 

0( ) ( )i j
R

g R R    

For example, multiply out the A
2
’ and E’ representations in D

3h
:   

 

 

 

1(1)(2) + 2(1)(-1) + 3(-1)(0) + 1(1)(2) + 2(1)(-1) + 3(-1)(0) 

2 + (-2) + 0 + 2 + (-2) + 0  =  0 

 

4) In a given representation the characters of all matrices belonging to 

operations in the same class are identical. 

5) The number of irreducible representations in a group is equal to the 

number of classes in the group.   

 

g =  No. of symmetry operations 

R in a class 
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Applications : Molecular vibrations (IR spectroscopy) 

Molecular vibrations are the result of the superposition of a number of relatively simple 

vibratory motions known as normal vibrations or normal modes of vibrations.  There are 3N – 

6 fundamental modes of normal vibrations for a non-linear molecule (3N – 5 for a linear 

molecule).  We will find that each of these normal modes has a certain symmetry and can be 

classified by an irreducible representation from the molecular point group.  Consider a water 

molecule with a Cartesian coordinate system on each atom (the z axis is in the plane and the 

primary rotation axis, the x axis is also in plane): 

 

 

 

 

 

 

The full matrix transformation of the vector coordinates by a C
2
 rotation is as follows: 

  O1   H2   H3  

C
2

 x
1
 y

1
 z

1
 x

2
 y

2
 z

2
 x

3
 y

3
 z

3
 

x
1
 -1 0 0       

y
1
 0 -1 0       

z
1
 0 0 1       

x
2
       -1 0 0 

y
2
       0 -1 0 

z
2
       0 0 1 

x
3
    -1 0 0    

y
3
    0 -1 0    

z
3
    0 0 1    

 

The character of this matrix is the sum of the diagonal elements, which = -1 

0 0 

0 0 

0 0 
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Note that if an atom is moved by the symmetry operation it does NOT contribute to the 

character of the matrix because it then appears as an off-diagonal term.   

The 
v
(xz) mirror plane operation does not move any atoms, so all count.  It keeps the x 

and z axes the same (+1 characters for each), while flipping the y 

3.   

 

The 
v
(yz) mirror plane operation, on the other hand, moves H2 and H3 (reflects them), 

so these will not contribute to the trace for this operation.  For the O atom, it keeps the y 

and z axes the same (+1 characters for each), while flipping the x 

 

The total representation for all the C
2v

 symmetry operations acting on the 3 atoms (9 xyz 

coordinates) of water is: 

C
2v

 E C
2
 

v
(xz) 

v
(yz) 

T 9 1 3 1 

 

The # of times that one of the irreducible representations occurs in a reducible 

representation (our total representation for the water molecule) is given by the formula: 

1
( ) ( )i

R
Tia Rg R

h
    

 

Where: ai   the no. of times the irreducible representation i occurs in 

the total representation T 

 h   the order of the group 

 R  the symmetry operations 

 g  the number of symmetry operations in a class 
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 (R)  the character associated with the symmetry operation R 

 

 

The character table of water with total representation is given as 

C
2v

 E C
2
 

v
(xz) 

v
(yz) 

A
1

 1 1 1 1 

A
2

 1 1 1 1 

B
1

 1 1 1 1 

B
2

 1 1 1 1 

T 9 1 3 1 

 

A
1
  =  ¼ [(9)(1) + (1)(1) + (3)(1) + (1)(1)]  =  (¼)(12)  =  3 

A
2
  =  ¼ [(9)(1) + (1)(1) + (3)(1) + (1)(1)]  =  (¼)(4)  =  1 

B
1
  =  ¼ [(9)(1) + (1)(1) + (3)(1) + (1)(1)]  =  (¼)(12)  =  3 

B
2
  =  ¼ [(9)(1) + (1)(1) + (3)(1) + (1)(1)]  =  (¼)(8)  =  2 

 

We find, therefore, that our total representation breaks down into 9 1-D irreducible 

representations:  3A
1
, A
2
, 3B

1
, and 2B

2
.    

These 9 irreducible representations represent the 3N degrees of freedom for H2O.  To 

find which represent our 3 normal mode vibrations we need to subtract out the 3 

translational (x, y, z) and 3 rotational (Rx, Ry, Rz) modes.   

By looking at the character table we can pick out the irreducible representations that 

correspond to these: 

x = B
1

  Rx = B
2
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y = B
2

  Ry = B
1

 

z = A
1

  Rz = A
2
 

Subtracting these six irreducible reps (A
1

, A
2
, 2B

1
, and 2B

2
) from the 9 that we 

projected from the total representation (3A
1
, A
2
, 3B

1
, and 2B

2
) leaves us with the 3 

normal vibrational modes for H2O: 

2A
1
  and  B

1
 

 

Infrared selection rules 

Consider our total vibrational wavefunction 
v
, which is equal to the product of the k 

normal mode wavefunctions, (ni): 


v
  =  (n1) 

(n2) 
(n3) (n4) . . . (nk) 

If we denote the ground state wavefunction by 
v
º and the excited state by 

v

j
 

(indicating a transition to the j 
th

 normal mode), the for a fundamental transition to occur 

by absorption of IR dipole radiation it is necessary that one or more of the following 

integrals be non-zero: 

0j

v v
x d     

0j

v v
y d     

0j

v v
z d     

x, y and z in the integrals refer to the orientation of the oscillating electric vector of the 

radiation field relative to a Cartesian coordinate system fixed on the molecule.  



DR. S. VALARSELVAN, Ph.D Page 35 
 

In order for one (or more) of these integrals to be non-zero, the normal mode vibrational 

wavefunction, 
v

j
, must belong to the same representation as x, y, or z.    

Therefore: 

A fundamental will be infrared active if the normal mode that is being excited belongs to 

the same representation as any one (or several) of the Cartesian coordinates. 

 

 

For Raman scattering it is necessary that at least one integral of the type below be non-

zero: 

0j

v v
P d     

P represents the polarizability tensor of the molecule and is equal to one of the quadratic 

(square) or binary functions of the Cartesian coordinates: 

P  =  x
2
, y
2
, z
2
, xy, xz, yz 

        and combinations of (e.g., x
2

-y
2
) 

A fundamental will be Raman active if the normal mode that is being excited belongs to 

the same representation as any one (or several) of the components of the polarizability 

tensor of the molecule. 
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In general, for any molecule that has an inversion center of symmetry (i), there 

will NOT be any fundamental normal modes in common between IR and Raman spectra.   

H
2
O has fairly low C

2v
 symmetry (no inversion center) so there is extensive overlap of 

the IR and Raman active modes: 

 IR Raman 

2A
1
 z 

x
2
, y
2
, z
2

 

B
1

 x Xz 

IR spectra of water 

 


