
CC – V – PROGRAMMING IN JAVA 18UCS5

Objective:
• To understand the basic concepts of Object Oriented Programming with Java language
• Enable to write the basic programmes

UNIT I

Fundamentals of Object Oriented Programming – Java Evolution – Overview of Java Language –
Data Types , Variables , Arrays – Operators – Control Statements.

UNIT II
Introduction to Classes – Class fundamentals – Declaring Objects – Constructors – Methods –
Overloading Methods – Nested and Inner Classes – String Handling.

UNIT III
Inheritance – Method Overriding – Abstract Class – Packages – Interfaces – Exception Handling –
Types Of Exception – Try And Catch – Nested Try Statements.

UNIT IV
Multithreaded Programming – Stream I/O and Files: Java I/O Classes and Interfaces – File – Stream
Classes – Byte Streams – Character Streams – Using Stream I/O – Serialization – Stream Benefits.

 UNIT V
Applets and Graphics: Fundamentals of Applets – Graphics – AWT and Event Handling: AWT
Components and Event Handlers – AWT Controls and Event Handling Types and Examples.

Outcome:

• Able to write the JAVA programmes
TEXT BOOK

Programming With Java A Primer 3/E E. Balaguruswamy

UNIT I: Chapter 1 to 7
UNIT II: Chapter 8, 9
UNIT III: Chapter 10, 11, 13
UNIT IV: Chapter 12, 16
UNIT V: Chapter 14, 15

REFERENCE BOOK

Programming With Java – C. Muthu

• http://www.learnjavaonline.org/

Part – A
Answer all the Questions

10 X 2 = 20 Marks

Part – B
Internal Choice Type

5 X 5 = 25 Marks

Part – C
Answer any 3

Questions
3 X 10 = 30 Marks

Question 1,2 – 1 Unit
3,4 – II Unit
5,6 – III Unit
7,8 – IV Unit
9,10 – V Unit

11a (or) 11b – 1 Unit
12a (or) 12b – II Unit
13a (or) 13b – III Unit
14a (or) 14b – IV Unit
15a (or) 15b – V Unit

16 – I Unit
17 – II Unit
18 – III Unit
19 – IV Unit
20 – V Unit

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT

Fundamentals of Object-Oriented Programming

Definition of Object-Oriented Programming

 Object-Oriented Programming is an approach that provides a way of modularizing
programs by creating partitioned memory area for both data and functions that can be
used as templates for creating copies of such modules on demand.

Object-Oriented Paradigm

 The major objective of Object-Oriented approach is to eliminate some of the flaws
encountered in the Procedural approach.

 OOP allows us to decompose a problem into a number of entities called Objects.
 The combination of data and methods make up an object.

Some of the features of Object-Oriented Paradigm are as follows:

 Emphasis is on data rather than procedure,
 Programs are divided into what are known as Objects.
 Data is hidden and cannot be accessed by external functions.
 Objects may communicate with each other through methods.
 New data and methods can be easily added whenever necessary.
 Data Structures are designed such that they characterize the objects.
 Follows bottom-up approach in program design.
 Methods that operate on the data of an object are tied together in the data

structure.

Fig. Organization of data and methods in OOP

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT

Object Oriented Programming Concepts (OR) Object Oriented Programming
Principles:

 When we represent the data in Object Oriented Programming language we get the
security. Examples of Object Oriented Programming Languages are LISP, ADA, ALGOL,
SMALLTALK, OBJECT COBAL, OBJECT PASCAL, Cpp, JAVA, DOT NET, etc. In order to say
any language is an Object Oriented Programming Language it has to satisfy the following
principles of OOPs.

OOP Principles

 Class
 Object
 Data Abstraction and Data Encapsulation
 Inheritance
 Polymorphism
 Dynamic Binding
 Message Passing

Class:

 “A Class is a way of binding the data and associated methods in a single unit”. Any
JAVA program if we want to develop then that should be developed with respective to
Class only i.e., without Class there is no JAVA program.

 The entire set of data and code of an object can be made a user defined data type
using the concept of a class. In fact Objects are treated as variables of the type Class. Once
a Class has been defined, we can create any number of objects belonging to that Class.

Class Diagram for defining a class:

Syntax for defining a class:

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT

 Class <clsname>
 {
 Variable Declaration;
 Methods Definition;
 }
Object:

 Objects are the basic runtime entities in an object-oriented system. In order to
store the data for the data members of the class, we must create an object.

Definitions of an Object

1. Instance (instance is a mechanism of allocating sufficient amount of memory
space for data members of a class) of a class is known as an object.

2. Class variable is known as an object.
3. Blue print of a class is known as an Object.
4. Real world entities are called as Objects.

The following figure is the representation of an object

 Fig: Representation of an Object

Data Abstraction and Data Encapsulation:

Data Abstraction:

 Abstraction and Encapsulation in Java are two important Object oriented
programming concept and they are completely different to each other.

 Data abstraction is a mechanism of retrieving the essential details without dealing
with background details.

 Abstraction represent taking out the behavior from how exactly it’s implemented.

Data Encapsulation:

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT

 Encapsulation means hiding details of implementation from outside world so that
when things change nobody gets affected.

 The wrapping up of data and methods into a single unit is known as Encapsulation.
The data is not accessible to the outside world and only those methods, which are
wrapped in the class, can access it.

Inheritance:

 Inheritance is the process of by which objects of one class acquire the properties
of objects of another class.

 Inheritance supports the concept of hierarchical classification. The concept of
inheritance provides the idea of reusability. This means that we can add additional
features to an existing class without modifying it. The following is an example for the
inheritance concept.

Polymorphism:

 Polymorphism means the ability to take more than one form. For example, an
operation may exhibit different behavior in different instances. The behavior depends
upon the type of data used in the operation. The following is an example for
polymorphism concept.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT

Dynamic Binding:

 Binding refers to the linking of a procedure call to the code to be executed in
response to the call. Dynamic binding means that the code associated with a given
procedure call is not known until the time of the call at runtime.

Message passing:

 The Object Oriented Program consists of a set of objects that communicate with
each other. Objects communicate with one another by sending and receiving information.
It involves the following basic steps.

 Creating classes that define objects and their behavior.
 Creating objects from class definitions.
 Establishing communication among objects.

Exchanging the data between multiple objects is known as Message Passing. Objects

communicate with one another by sending and receiving information much the same

way as people pass message to one another.

Message passing involves specifying the name of the object, the name of the method

(message) and the information to be sent. Example

 employee.salary (name);

 object message information

Objects have a life cycle. They can be created and destroyed. Communication with an

object is feasible as long as it is alive.

Benefits of OOP:

OOP offers several benefits to the program designer and the user. The principal
advantages are:

 Through inheritance, we can eliminate redundant code and extend the use of
existing classes.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT

 We can build programs from standard working modules that communicate with
one another rather than, having to start writing the code from scratch. This leads
to saving of development time and higher productivity.

 The principle of data hiding helps the programmers to built secure program.

 It is possible to have multiple objects to coexist without any interference.

 It is easy to partition the work in a project based on objects.

 Object-oriented systems can be easily upgraded from small to large system.

 Message passing technique for communication between objects makes the
interface descriptions with external system much simpler.

 Software complexity can be easily managed.

Applications of OOP

 The following are some of areas of Object Oriented Programming

 Real-time systems
 Simulation and modeling
 Object oriented databases
 Hypertext, hypermedia and expert text.
 AI and expert systems.
 Neural networks and parallel programming.
 Decision support and office automation systems.

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 1

Java Evolution

History of Java

1. Java is a programming language used to develop distributed applications.
2. Java was developed at SUN Micro System INC USA by a person called James

Gosling and others in the year of 1990.
3. Originally Sun Micro System is one of the Academic University (Stanford

University of Networks) developed “rules” for development of java and those
rules are programmatically implemented by Java Soft INC USA. Java Soft is one of
the software divisions of Sun Micro System.

4. The original name of java language is OAK (Scientifically it is a tree name).
5. The software OAK was not fulfilling or not solving industry problems or

demands.
6. Hence the software OAK was revised in the year of 1995 and released to the

industry on the name of Java.

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 2

JAVA released to the market in three categories J2SE (JAVA 2 Standard Edition),
J2EE (JAVA 2 Enterprise Edition) and J2ME (JAVA 2 Micro/Mobile Edition).

 J2SE is basically used for developing client side applications/programs.
 J2EE is used for developing server side applications/programs.
 J2ME is used for developing mobile or wireless applications.

Why the java is a platform independent language?

The most striking feature of the language is that it is a platform-independent language.

Reason
 Microsoft System has developed a technology called DOT NET and Sun Micro
System has developed a technology called JAVA. Both these technologies are called
distributed technologies.
 The technology DOT NET will run only on that operating system`s which are
provided by Microsoft. Hence DOT NET technology is platform dependent technology.
Whereas, the technology called JAVA will run on all operating systems irrespective of
their providers. Hence JAVA is called platform independent technology.

Features or Buzzwords of JAVA

The following are the features of the JAVA language.

1. Compiled and Interpreted.
2. Simple and Small.
3. Platform Independent.
4. Architectural Neutral.
5. Portable.
6. Multithreaded.
7. Distributed.
8. Robust
9. Secure.
10. High Performance.
11. Interpreted.
12. Dynamic.
13. Object Oriented and these are explained below.

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 3

Compiled and Interpreted
 Usually a computer language is either compiled or interpreted. Java combines
both these approaches thus Java is a two-stage system.
 First, Java compiler translates source code into what is known as byte code
instructions. Byte codes are not machine instructions.
 In the second stage, the Java interpreter generates machine code that can be
directly executed by the system.
Thus Java is both compiled and interpreted language.

Simple and Small
 Java is small and simple language. For example, Java does not use pointers,
preprocessor header files, goto statement and many others. It also eliminates operator
overloading and multiple inheritance.

**Platform Independent
 A program or technology is said to be platform independent if and only if which
can run on all available operating systems.

The language JAVA will have a common data types and the common memory
spaces on all operating systems. The JAVA software contains the special programs
which converts the format of one operating system to another format of other
operating system. Hence JAVA language is treated as platform independent language.

**Architectural Neutral
 A language or technology is said to be architectural neutral which can run on any
available processors in the real world. The languages like C, C++ are treated as
architectural dependent. The language Java can run on any of the processor irrespective
of their architecture and vendor.

Portable
 A portable language is one which can run on all operating systems and on all
processors irrespective of their architectures and providers. The languages like C, C++
are treated as non-portable languages whereas the language Java is called Portable
language.
 Portability= Platform Independent + Architectural Neutral
Multithreaded
 Multithreaded means handling multiple tasks simultaneously. Java supports
multithreaded programs. This means that we need not wait for the application to finish
one task before beginning another. For example, we can listen to an audio clip while
scrolling a page and at the same time download an applet from a remote computer.

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 4

Distributed
 Java is designed as a distributed language for creating the applications on
networks. It has the ability to share both data and programs. Java programs can open
and access remote objects on Internet as easily as they can do in a local system.

Robust
 Java is one of the Robusted programming language. Since java programming
language effectively addresses the run time errors. In Java programming runtime errors
are known as Exceptions.
 The languages like C, C++ are treated as week programming languages (Not
Robust), since they are unable to deal with runtime errors. Runtime errors are occurred
when we enter invalid input.
Note:
 Compile time errors are occurring when the programmer is not following syntax
rules of the programming language.

Secure
 Java is one of the most secured programming languages. To provide the security
to our java real time applications, we need not to write our own security code. Since
java library (API) contains readily available security programs for protecting
confidential information from unauthorized users.
 Hence java is one of the powerful secured programming language.

High Performance
 Java is one of the High Performance programming language because of the
following reasons.
 Automatic memory management (Garbage Collector).
 Magic of byte code (Execution of the java application is very faster compared to

other programming language applications).
 According to industry experts java programmer performance is high because

java programming environment is free from pointers. Hence development of an
application takes less time.

Interpreted
 In the older versions of java, compilation phase is so fast than the interpretation
phase. It was the industry complaint on older versions of java.
 In the newer versions of java, to speed up the interpretation phase, sun micro
system had developed JIT (Just in Time) compiler and added to JVM.

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 5

 In the current versions of java interpretation phase is so faster than compilation
phase. Hence java is one of the highly interpreted programming language.

Dynamic
 In any programming language memory can be allocated in two ways. They are
 Static Memory Allocation
 Dynamic Memory Allocation
Java programming does not follow the static memory allocation but it always

follows dynamic memory allocation.
Dynamic memory allocation is one in which memory will be allocated at run time. In

java programming to allocate the memory space dynamically we use an operator called
“new”. “new” operator is known as dynamic memory allocation operator.

Object Oriented

 Any programming language that satisfies all the principles of OOP is called as an
Object Oriented Programming Language. The Java language satisfies all the principles of
OOP. Hence it is called an Object Oriented Programming Language. Java is a true object
oriented language. Almost everything in java is an object.

Differences between Java and C
 The major difference between Java and C is that Java is an Object Oriented
Programming Language whereas the C is a Procedure Oriented Programming Language.

 C Java
Structures are supported Structures are not supported
Unions are supported Unions are not supported
Storage classes such as automatic, register,
external are supported

Storage classes are not supported

Type definition is supported Type definition is not supported
Size of() operator is supported Size of() operator is not supported
Pre-processor directives such as
define, #include are supported

Pre-processor directives are not
supported

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 6

Differences between Java and C++
 The major difference between the Java and C++ is that, Java is a pure object
oriented programming language whereas C++ is a partially object oriented
programming language.

 C++ Java
C++ is not a purely object-oriented
programming language, since it is possible
to write C++ programs without using a
class or an object

Java is purely object programming
language. since it is not possible to write a
java program without using alteast one
class

Pointers are available in C++ We cannot create and use pointers in java

Allotting memory & deallocating memory
is the responsibility of the programmer

Allocation & deallocation of memory will
be taken care of by JVM

C++ has goto statement Java does not have goto statement
Multiple Inheritance feature is available in
C++

No multiple Inheritance in java

Operator overloading is available in C++ It is not available in java
#define, typedef and header files are
available in C++

#define, typedef and header files are
available in C++

There are 3 Access specifiers in C++
private,public & and protected

Java supports 4 access specfiers
private,public,protected and default

There are constructors and destructors in
C++

Only constructors are there in java, No
destructors are available in this language

Java and Internet

 The first application program written in java was Hot Java. Hot Java is a Web

Browser used to run applets on Internet.
 Internet users can use Java to create the applet programs and run them locally

by using a web browser.
 Internet users can also download the applet from a remote computer as shown

in below.

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 7

 Fig: Downloading of applets via internet

 Due to this, Java is popularly known as Internet Language.

Java and World Wide Web

 World Wide Web (WWW) is an open ended information retrieval system
designed for internet distributed environment. This system contains the web pages that
provide both information and control. We can navigate to a new document in any
direction.
 Java and Web share the same philosophy, Java could be easily incorporated into
the web system. Before Java the WWW was limited to display the images and texts.
However, the incorporation of Java into Web pages made it capable of supporting
animation, graphics, games, and a wide range of special effects.
 Java communicates with a Web page through a special tag called <APPLET>. The
following are the steps that illustrate the communication steps.

 The user sends a request for an HTML document to the remote computer`s Web

server. The Web server is a program that accepts a request, processes the
request, and sends the requested document.

 The HTML document is returned to the user`s browser. The document contains
the APPLET tag, which identifies the applet.

 The corresponding applet byte code is transferred to the user`s computer. This
byte code had been previously created by the Java compiler using the Java source
code file for that applet.

 The Java enabled browser on the user`s computer interprets the byte codes and
provide output.

 The user may have further interaction with the applet but with no further
downloading from the provider`s Web server. This is because the byte code
contains all the information necessary to interpret the applet.

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 8

Web Browsers
 Web browsers are used to navigate through the information found on the net.
They allow us to retrieve the information spread across the Internet and display it
using the hypertext markup language (HTML). Examples for Web browsers are as
follows.
 Hot Java
 Netscape Navigator
 Internet Explorer

Hot Java
 When the Java language was first developed and ported to the Internet, no
browsers were available that could run Java applets.

Hot Java is the web browser from Sun Microsystems that enables the display of
interactive content on the Web, using the Java language. Hot Java is entirely written in
Java language and demonstrates the capabilities of Java Programming Language.

Netscape Navigator
 Netscape Navigator, from Netscape Communications Corporation, is a general-
purpose browser that can run Java applets.
 Netscape Navigator has many useful features such as visual display about
downloading process and indication of the number of bytes downloaded.
Internet Explorer
 Internet Explorer is another popular browser developed by Microsoft for
Windows 95, NT and XP Workstations. Both the Navigator and Explorer use tool bars,

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 9

icons, menus and dialog boxes for easy navigation. Explorer uses a just-in-time (JIT)
compiler which greatly increases the speed of execution.

Java Environment:
 Java Environment includes a large number of development tools and hundreds of
classes and methods. The development tools are part of the system known as Java
Development Kit (JDK) and the classes and methods are part of the Java Standard
Library (JSL), also known as the Application Programming Interface (API).

Java Development Kit (JDK):
 The Java Development Kit comes with a collection of tools that are used for
developing and running Java programs. They include
Applet viewer : Enables us to run Java applets.
java (Java Interpreter) : Java Interpreter, which runs applets and applications by
reading and interpreting bytecode files.
javac (Java Compiler) : The Java Compiler, which translates Java source code to
bytecode files that the interpreter can understand.
Javadoc (for creating HTML documents): Creates HTML- format documentation from
Java source code files.
javah (for C header files): Produces header files for use with native methods.
javap (Java disassemble): Which enables us to convert bytecode files into a program
description.
jdb (Java debugger) : Which helps us to find errors in our programs.

Application Programming Interface:
 The Java Standard Library includes hundreds of classes and methods grouped
into several functional packages. Most commonly used packages are

 Java Evolution

Dr. R. MALATHI, AP/CS, HHRC, PDKT 10

 Language Support Package: A collection of classes and methods required for
implementing basic features of java.

 Utility Package: A collection of classes to provide utility functions such as date
and time functions.

 Input/output Package: A collection of classes required for input/output
manipulations.

 Networking Package: A collection of classes for communicating with other
computers via Internet.

 AWT Package: The Abstract Window Tool Kit package contain classes that
implements platform independent graphical user interface.

 Applet Package: This includes a set of classes that allows us to create Java
apllets.

Java Runtime Environment:

 The Java Runtime Environment (JRE) facilitates the execution of java
programs. It primarily comprises of the following:

 Java Virtual Machine (JVM): It is a program that interprets the intermediate
Java byte code and generates the desired output.

 Runtime class libraries: These are a set of core class libraries that are required
for the execution of java programs.

 User interface tool kit: AWT and Swing are example of toolkits that support
varied input methods for the users to interact with the application program.

 Deployment technologies: JRE comprises the following key deployment
technologies.

• Java plug-in: Enables the execution of a Java applet on the browser.
• Java Web Start: Enables remote-deployment of an application.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 1

Chapter-3

Overview of Java Language

 Java is a general purpose, Object-Oriented programming language. We can
develop two types programs. They are

 Stand- Alone applications
 Web-Applications

Q. Explain the Structure of a java program

 To write a java program, we first define classes and then put them together. A
Java program may contain one or more sections as shown in below.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 2

Documentation Section

 The documentation section contains a set of comment lines giving the name of
the program, the author and other details.

There are three types of comments in java – single line, multi line, and Java
documentation.

 Single line Comments

These comments are for making a single line as a comment. These comments
start with double slash symbol (//) and after this, whatever is written till the end of
the line is taken as a comment.

Example: // This is my comment of one line

 Multi line comments

These comments are used for representing several lines as comments. These
comments start with /* and end with */. In between /* and */ , whatever is written
is treated as a comment.

Example:

 /* This is a first line
 This is second line */

 Java Documentation Comments

These comments start with /** and end with */. These comments are used to
provide description for every feature in a java program.

Package Statement

 The first statement allowed in a java file is a package statement. This statement
declares a package name and informs the compiler that the classes defined here belong
to this package. The package statement is optional.

Example

 package student;

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 3

Import Statement

 The next statement after a package statement may be a number of import
statements. This is similar to the #include statement in C. Using import statements; we
can access to classes, that are part of other named packages.

Example: import student.test;

 This statement instructs the interpreter to load the test class contained in the
package student.

Interface Statements

 An interface statement is like a class, but includes a group of method
declarations. This is also an optional section and is used only when we wish to
implement the multiple inheritance features in the program.

Class Definitions

 A Java program may contain multiple class definitions. Classes are the primary
and essentials of a Java program.

Main Method Class

 Since every Java stand-alone program requires a main method as its starting
point, this class is the essential part of a java program. A simple java program may
contain only this part. The main method creates objects of various classes and
establishes communications between them. On reaching the end of main, the program
terminates and the control passes back to the operating system.

Q. Explain a Simple java program

 The following is a simple java program

//Sample.java

Class Sample

{

 Public static void main (String args [])

 {

 System.out.println(“Welcome to Java Programming Language……”);

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 4

 }

}

 The above simple java program contains the following..

Class Declaration

 The first line

 class Sample

 declares a class, which is an object oriented construct. class is a keyword used to
declare a new class definition. Sample indicates the name of the class.

Opening Brace

 Every class definition in java begins with an opening brace “{“ and ends with a
matching closing brace “ } ”.

The Main Line

 The third line

 public static void main(String args[])

 defines a method named main. Every Java application program must include the
main () method. This is the starting point of the interpreter to begin the execution of
the program.

A Java program can have any number of classes but only one of them must include a
main method to initiate the execution.

 This line indicates a number of keywords, public , static and void

public: The keyword public is an access specifier that declares the main method
is accessible to all other classes.

static Static is reserved keyword which means that a method is accessible and
usable even though no objects of the class exist.

void This keyword states that the main method does not return any value.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 5

The Output line

 The executable statement in this program is,

System.out.println(“ Welcome to Java Programming Language……”);

a. System: It is name of Java utility class.
b. out: It is an object which belongs to System class.
c. Println(): It is utility method name which is used to send any String to console.

 Welcome to Java Programming Language…….

 The method println() always append a new line character to the end of the string.

Q. Explain about the Java Tokens

 The smallest individual units in a program are called as tokens. The compiler
recognizes them for building up expressions and statements.

 In simple terms, a java program is a collection of tokens, comments and white
spaces. Java language includes five types of tokens. They are

 Reserved keywords
 Identifiers
 Literals
 Operators
 Separators

Reserved Keywords

 Keywords are an essential part of a language definition. They implement the
specific features of the language. The Java language has reserved 50 words as keywords
as shown in the below table.

 Since the keywords have specific meaning in java, we cannot use them as names
for variables, classes, methods and so on. All keywords are to be written in lower-case
letters.

abstract assert boolean break byte
case catch char class const

continue default do double else
enum extends final finally float

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 6

for goto if implements import
instanceof int interface long native

new package private protected public
return short static strictfp super
switch synchronized this throw throws

transient try void volatile while

Identifiers

 Identifiers are program designed tokens. They are used for naming classes,
methods, variables, objects, labels, packages and interfaces in a program. Java
identifiers follow the following rules

 They can have alphabets, digits and the underscore (_) and dollar ($) sign
characters.

 They must not begin with a digit.
 Uppercase and lowercase letters are distinct.
 They can be of any length.

Literals

 Literals in java are a sequence of characters that represent constant values to be
stored in variables. Java language specifies five major types of literals. They are

 Integer literals
 Floating point literals
 Character literals
 String literals
 Boolean literals

Operators

 An operator is a symbol that takes one or more arguments and operates on them
to produce a result.

Separators

 Separators are symbols used to indicate where groups of code are divided and
arranged. They basically define the shape and function of our code. The following are
the list of separators and their functions.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 7

Name Its function
Parentheses () Used to enclose the parameters in method definition and

invocation, also used for defining precedence in expressions.
Braces {} Used to contain the values of automatically initialized arrays

and to define a block of code for classes, methods and local
scopes

Brackets [] Used to declare array types and for dereferencing the array
values.

Semicolon ; Used to separate the statements
Comma , Used to separate the consecutive elements in a variable

declaration
Period . Used to separate package names from sub-packages and

classes, also used to separate a variable method from a
reference variable.

Q. Explain about the Java Statements?

 The statements in java are like sentences in natural languages. A statement is an
executable combination of tokens ending with a semicolon (;) mark. Statements are
usually executed in the sequence in the order in which they appear.

 The following diagram illustrates the types of java statements.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 8

Expression Statements

 Most statements are expression statements. Java has seven types of Expression
statements.

 Assignment
 Pre-increment
 Pre-decrement
 Post-increment
 Post-decrement
 Method call
 Allocation expression

Labeled Statement

 Any statement may begin with a label. Such labels must not be keywords. In java
they are used as the arguments of jump statements.

Control Statements

 In java, it is possible to control the flow of execution. Java language provides
three types of control structures. Those are discussed below

 Selection Statement
These select one of several control flows. There are three types of

statements in java. Those are if, if-else and switch
 Iteration Statement

These specify how and when looping will take place. There are three types
of iteration statements in java. Those are while, do and for.

 Jump Statement
Jump statements pass the control to the beginning or end of the current

block, or to a labeled statement. The four types of jump statements are break,
continue, return and throw.

Synchronization Statement

 These are used for handling issues with multithreading.

Guarding Statement: Guarding statements are used for safe handling of code that may
cause exceptions. These statements use the keywords try, catch and finally.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 9

Q. Explain the steps for installing and configuring the java.

 The following are the steps to install a java software in our system.

1. Double click the .exe file to initiate the installation procedure. The welcome
screen appears as shown in below.

2. The welcome screen shows the licensing terms and conditions. Click the Accept
button to begin the Java installation. The progress screen appears as shown in
below.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 10

3. The progress screen depicts the percentage of installation that has been
completed. Once the installation is complete, the complete screen appears as
shown in below.

4. The complete screen depicts the successful installation of java on the computer

system. Click the Finish button to end the installation process.

Configuring Java

 Once Java is installed, we need to configure it by adding the Java path to
environment variable, PATH. The following are the steps to set the PATH variable to
the Java directory.

1. Right click on the My Computer icon and select the properties option from the
drop down menu. The system properties dialog box appears as shown in below.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 11

2. Select the Advanced tab to display the advanced tab page, as shown in below.

3. Click the Environmental Variables button to display the Environmental variables
dialog box as shown in below.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 12

4. The Environmental dialog box is divided into two sections.
 User variables
 System Variables.

 Under the Systems Variable section, select the path option below the variable
column and click the Edit button. The Edit System Variable dialog box appears as
shown in below.

5. By default the path variable is already set to multiple locations. To set the Java
directory path to the Path variable, append the directory path in the variable
value text box, separated by a semi-colon, as shown in below.

Q. Explain the procedure for implementing a java program

 Implementation of a Java application program involves a series of steps. They
include

 Creating the program
 Compiling the program
 Running the program

Creating the program

 Consider the following program

//Test.java

class Test
{
 public static void main(String args[])
 {
 System.out.println(“Hellow !”);

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 13

 System.out.println(“Welcome to the world of Java…”);
 }
}

Save this program using a file name Test.java. This file is called the source file. All
the java source files will have the extension .java.

Compiling the program

 To compile the java program, we must use the java compiler javac along with the
source file name on the command line as shown in below.

 C:/> javac Test.java

 If everything is OK, the java compiler creates a .class file containing the byte
code of the program (Test.class).

Running the program

 To run a stand-alone application we need to use the java interpreter on the
command prompt as shown in below.

 C:/> java Test

 Now, the interpreter looks for the main method in the program and begins
execution from there. When the program is executed the above program displays the
output…

 Hellow !

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 14

Welcome to the world of Java…

Q. Explain about the Java virtual machine

 Java Virtual Machine (JVM) is the heart of the entire Java program execution
process. It is responsible for taking the .class and converting each byte code instruction
into the machine language instruction that can be executed by the microprocessor.

 First of all, the .java program is converted into a .class consisting of byte code
instructions by the java compiler for a machine called Java Virtual Machine as shown in
below. The JVM exists only inside the computer memory.

 The byte code is not a machine specific code (machine code). The machine code
is generated by the Java Interpreter by acting as an intermediary between the virtual
machine and the real machine as shown in below.

 The following figure illustrates how Java works on a typical computer. The Java
Object Framework (Java API) acts as the intermediary between the user programs and
the virtual machine and which in turn acts as the intermediary between the operating
system and the java object framework.

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 15

Q. Explain the concept of Command Line arguments in java?

 Command line represents the run command and the values given at the time of
running the program. Command line arguments represent the values passed to main()
method.

 To catch and store these values, main() has a parameter, String args[] as

public static void main(String args[])

 Here, args[] is a one dimensional array of String type. So it can store a group of
stings, passed to main() from outside by the user. The user should pass the values from
outside, at the time of running the program at command prompt, as

 C:\> java Prog 11 22 BVRICE

 The three values passed to main() at the time of running the program are 11, 22,
and BVRICE. These three values are automatically stored in the main() methods args[]
in the form of strings. This is because, args[] is a String type array.

Program

 The following program illustrates the use of command line arguments.

//CommandLine.java

class CommandLine
{
 public static void main(String args[])
 {
 int count, i=0;
 String str;
 count= args.length;
 System.out.println(“Number of arguments=” + count);
 while(i<count)
 {
 str=args[i];
 i=i+1;
 System.out.println(i + “ : “ + “ Java is “ + str + “!”);
 }//while
 }//main()
}//class
Compile and run the program with the command line as follows….

C:\> javac CommandLine.java

 PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT 16

C:\> java CommandLine Simple Object_Oriented Portable Distributed

Output

Number of arguments =4

1 : Java is Simple !

2 : Java is Object_Oriented !

3 : Java is Portable !

4 : Java is Distributed

Q. Why java is called as a freeform language (OR) explains the programming style
of a java program

 Java is a freeform language, because we need not have to indent any lines to
make the program work properly. Java system does not care where on the line we begin
typing. The following is an example.

 The statement,

 System.out.println(“Java is wonderful ! “);

Can be written as

 System
 .
 out.
 println
 (
 “Java is wonderful !”
);

***************End of Chapter-3*****************

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 1

Chapter-4

Constants, Variables and Data types

Constants in java

A constant is an identifier which takes a fixed value during the program execution same
rules we should follow while declaring the constants of variables.

Types of constants:

We have 4 types of constants .which are given below.

1. Integer constants: A constants which is formed with integers including with zero, which can
take positive and negative.

Ex: 123,-12, 0, 22

2. Floating point constants: A constants which is formed with real values including fractional
part apart from integers

Ex: 12.5,-12.0, 3.14, 6.1

The real numbers are formed with two parts known as mantissa and exponent where
mantissa is either decimal or integer and exponent is an integer either positive (or) negative

 Ex: 26.506, 26.506+e-2, 26.506+e3

3) Character constants: A Character constant is a single character i.e., enclosed with a pair of
single code

 Ex: ‘a’, ’8’, ’4’,’_’,’c’

Every character is having integer values known as ASCII (American standard code for
information interchange) values

4) String constants: A group of characters combined with the a pair of double codes is known
as string constants.

Ex: “BVRICE”,” INDIA

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 2

Variables in java

A Variables is an identifier this takes different values at different times during the
program execution .In java language a variable can be declared as follows

Syntax: Data type variable name:

Example:

 int marks, total;
 float average;
 char x;
 long area;
 double volume;

While declaring the variable we should follow some precautions .which are given below.

Rules for defining variables

1) They must begin with a character including underscore.
2) They should not start with digits.
3) They can take any of length.
4) Keywords are not used in the variable names.
5) Upper case and lower case are distinct i.e., sum & SUM are not the same.

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 3

Data types in java

“Data types are used for representing the data in main memory of the computer.”

 In java we have eight data types which are grouped in four groups. They are Integer
category Data types, Floating point data types, Character category data types, Boolean
category data types.

Integer category data types
 They are used to represent integer data. This category of data type contains four
data types. Which are given in the following table

 Data type Size Range
 byte 1 +127 to -128
 short 2 +32767 to -32768
 int 4 +2147483647 to -2147483648
 long 8

 Whatever the data type we should not exceed the predefined value

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 4

Float category data types

Float category data types are used for representing the data in the form of scale, precision i.e.,

these category data types are used for representing float values.
This category contains two data types they are given in the following table.

 Data type size Range
 Float 4 +2147483647 to -2147483648
 Double 8

 Whenever we take any decimal constant directly in a Java program it is by default treated as
highest data type in float category i.e., double.

Character category data types

 A character is an identifier which is enclosed within single quotes.
 In JAVA to represent character data, we use a data type called char. This data

type takes two bytes since it follows UNICODE character set.

 char
.

 C/Cpp JAVA

 1 byte 2 bytes

 English 18 International languages

 ASCII UNICODE

 Data type Size Range
 char 2 +32767 to -32767

UNICODE character set is one which contains all the characters which are available in 18

international languages and it contains 65536 characters.

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 5

Boolean category data types

 Boolean category data types is used for representing logical values i.e., TRUE or
FALSE values.

 To represent logical values we use a keyword called Boolean.
 This data type takes o bytes of memory space.

NOTE: All keywords in JAVA must be written in small letters only.

Type casting in java
 The process of converting one data type to another data type is called casting.

Examples:

 int m=50;

 byte n= (byte)m;

Java data type casting comes with 3 types

1. Implicit casting

2. Explicit casting

3. Boolean casting

 Implicit casting (widening conversion):

A data type of lower size (occupying less memory) is assigned to a data type of higher
size. This is done implicitly by the JVM. The lower size is widened to higher size. This is also
named as automatic type conversion. Examples:

 int x=10; // occupies 4 bytes

 double y=x; // occupies 8 bytes

 System.out.println(y); // prints 10.0

In the above example 4 bytes integer value is assigned to 8 bytes double value.

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 6

Explicit casting (narrowing conversion):

A data type of higher size (occupying more memory) cannot be assigned to a data type of
lower size. This is not done implicitly by the JVM and requires explicit casting, a casting
operation to be performed by the programmer. The higher size is converted to lower size.

double x=10.5; // 8 bytes

int y=x; // 4 bytes; raises complication error

In the above code, 8 bytes double value is converted to 4 bytes int value. It raises error. Let us
explicitly type cast it.

double x=10.5;

int y=(int)x;

The double x is explicitly converted to int y. The thumb rule is, on both sides, the same data type
should exist.

Boolean casting:

A boolean value cannot be assigned to any other data type. Except boolean, all the
remaining 7 data types can be assigned to one another either implicitly or explicitly; but boolean
cannot. We say, boolean is incompatible for conversion. Maximum we can assign a boolean
value to another boolean.
Following raises error.

boolean x=true;

int y=x; // error

boolean x=true;

int y=(int)x; // error

byte –> short –> int –> long –> float –> double

In the above statement, left to right can be assigned implicitly and right to left requires
explicit casting. That is, byte can be assigned to short implicitly but short to byte requires
explicit casting.

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 7

Declaration of variables:
 In java, the variables are the names of the storage locations. After designing the variable
name, we must declare them to the compiler. It tells three things.
1. It tells the compiler what the variable name is
2. It specifies what type of data the variable will hold.
3. Place of declaration statement decides the scope of the variable.
 A variable must be declared before it is used in the program variable can be used to store
a value of any data type. That is, name has nothing to do with the type. Java allows any properly
formed variable to e declared as a type.
 The declaration statement defines the type of the variable. The general form of the
declaration is
<data type name> <variable-name>
Ex: int count;
Giving values to variables:
 A variable must be given a value after it has been declared. This can be achieved in two
ways.
1. Assignment statement
2. Read statement
Assignment statement
 The syntax for giving a value to the variable is as follows.
<variable-name>=<value>
Ex: int x;
 x=10; or int x=10;
Read statement:
 We may also give values to variables interactively through the keyboard using the
readLine () method as illustrated in program
Example1: Reading data from keyboard
 The following java program illustrates the concept of reading the data from the keyboard
using the readLine() method.

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 8

Aim: To read an integer value from the keyboard.
//Reading.java
import java.io.DataInputStream
class Reading
{
 public static void main(String args[]) throws IOException
 {
 DataInputStream in;
 in=new DataInputStream(System.in);
 int i;
 System.out.println(“Enter an integer”)
 i=Integer.parseInt (in.readLine ());
 System.out.println (“entered integer value is:”+i);

 }
}

Example2:
Aim: To read two integer values from the keyboard using readLine() method and to find out the
sum of those two integer values.
//IntegerSum.java
import java.lang.*;
import java.io.*;

class IntegerSum
{
 public static void main(String args[])throws IOException
 {
 int i1,i2,i3;
 String s1,s2;
 DataInputStream in=new DataInputStream(System.in);
 System.out.println("Enter the first integer");
 s1=in.readLine();
 i1=Integer.parseInt(s1);

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 9

 System.out.println("Enter the second integer");
 s2=in.readLine();
 i2=Integer.parseInt(s2);
 i3=i1+i2;
 System.out.println("The intger sum=" + i3);
 }
}

Example3:
Aim: To find the sum of two float values by reading them from the keyboard using readLine()
method.
//FloatSum.java
import java.lang.*;
import java.io.*;

class FloatSum
{
 public static void main(String args[])throws IOException
 {
 float f1,f2,f3;
 DataInputStream in=new DataInputStream(System.in);
 System.out.println("Enter the first integer");
 f1=Float.parseFloat(in.readLine());
 System.out.println("Enter the second integer");
 f2=Float.parseFloat(in.readLine());
 f3=f1+f2;
 System.out.println("The intger sum=" + f3);
 }
}

PROGRAMMING IN JAVA

Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 10

Scope of variables
 These are of three types
 Instance variables: These are declared and created when the objects are

instantiated. They take different values for each object.
 Class variables: These are present within the class.
 Local variables: are the variables that are present within the method.

Symbolic constants:
 A Numeric value is not always clear, to the sense that it means different things at
different places. For example 50 may mean no of students at one place, and the pass marks at the
other place.
 Assignment of a symbolic name to such constants frees us from these problems. For
example we may use the name strength to denote the no of students. “pass-mark “to denote the
pass marks required in a subject.
 A constant is declared as follows.
Syntax: final <data types> <symbolic-name>=value
Ex: final int strength=50;

1. Symbolic names take the same form as variable names. But they are generally written in
capitals to distinguish from the normal variable names.

2. After declaration they should not be assigned any value.
Ex: STRENTH=200; is illegal

3. They should not be declared inside a method. They should be used only as class data
members in the beginning of the class.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 1

Chapter-5

Operators and Expressions

Q. Explain about the Operators in Java

 Java supports a rich set of operators. An Operator is a symbol that tells the computer to
perform certain mathematical or logical manipulations. Operators are used in programs to
manipulate data and variables.

Java Operators are classified into a number of related categories as shown in below.

 Arithmetic Operators
 Relational Operators
 Logical Operators.
 Assignment Operators
 Increment and Decrement Operators.
 Conditional Operators.
 Bitwise Operators
 Special Operators

Arithmetic Operators

 Java provides all the basic arithmetic operators. They are listed below. These can be used
to construct the mathematical expressions. The operators work the same way as they do in any
other languages. These can operate on any built-in numeric data type of java.

Operator Meaning
+ Addition or unary plus
- Subtraction or Unary

minus
* Multiplication
/ Division

% Modulo Division

Arithmetic Operators are used as follows

a+b, a-b, a*b, a/b, a%b

where a and b are may be variables or constants and are known as operands.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 2

We have three types of arithmetic possible names.

 Integer Arithmetic.
 Real Arithmetic
 Mixed-Mode Arithmetic.

Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the
expression is called an integer expression, and the operation is called integer arithmetic. Integer
arithmetic always yields an integer value.

Real Arithmetic

 An arithmetic operation involving only real operands is called real arithmetic. A real
operand may assume values either in decimal or exponential notation. Since floating point values
are rounded to the number of significant digits permissible, the final value is an approximation of
the correct result.

Mixed-Mode Arithmetic

 When one of the operands is real and the other is an integer, the expression is called a
mixed mode arithmetic expression. If either operand is of the real type, then the other operand is
converted to real and the real arithmetic is performed. The result will be a real.

Relational Operators

 We often compare two quantities, and depending on their relation, take certain decisions.
These comparisons can be done with the help of relational operators. The list of operators as
shown in below

Operator Meaning
< Is less than

<= Is less than or
equal to

> Is greater than
>= Is greater than or

equal to
== Is equal to
!= Is not equal to

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 3

 A simple relational expression contains only one relational operator and is of the
following form.

 exp1 reloperator exp2

 here exp1 and exp2 are any two arithmetic expressions, which may be simple constants,
variables or combination of them. When arithmetic expressions are used on either side of a
relational operator, the arithmetic expressions will be evaluated first and then the results
compared. That is, arithmetic operators have a higher priority over relational operators.

Logical Operators

 In addition to relational operators, java has three logical operators listed below in the
table.

Operator Meaning

&& Logical
AND

|| Logical OR

! Logical
NOT

 The logical operators && and || are used when we want form compound conditions by
combining two or more relations.

Example: (a>b && b<c)

 An expression of this kind which combines two or more relational expressions is termed
as a logical expression or a compound relational expression. Like the simple relational
expressions, a logical expression also yields a value of true or false, according to the truth table
of AND and OR.

exp1 exp2 exp1 && exp2 exp1 || exp2

True True True True

True False False True

False True False True

False False False False

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 4

Assignment Operators

 Assignment Operators are used to assign the value of an expression to a variable. We
have seen the usual assignment operator, ‘=’. In addition to that java has a set of short hand
assignment operators which are used in the form

 var op=exp

 Where var is a variable, exp is an expression and op is a java binary operator. The
operator ‘op=’ is known as shorthand assignment operator.

Example:

 x+=y+4

This actually means,

 x=x+(y+4).

There are three advantages using the shorthand operators, they are

 What appears on the left hand side need not be repeated and therefore it becomes easier
to write.

 The statement is more concise and easier to read.
 Use of shorthand operator’s result in a more efficient code.

Increment and Decrement Operators

 Java has two very useful operators called the increment (++) and decrement (--)
operators. The operator ++ adds one to the operand while the operator – subtracts one. Both are
unary operators.

Example: ++a, a++, --a, a--.

 ++a is called as pre increment and a++ is called post increment.

Though ++a and a++ mean the same thing when they form statements independently, they
behave differently when they are used in expressions on the right hand side of an assignment
statement.

Example:

 a=5;

 b=++a;

 the result is a=6, b=6;

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 5

 a=5;

 b=a++;

 the result is a=6, b=5;

A prefix operator fist adds one to the operand and then the result is assigned to the variable on
left. On the other hand, a post fix operator first assigns the value to the variable on left and then
increments the operand.

Conditional Operator

 The character pair ?: is a ternary operator available in java. This operator is used to
construct conditional expressions of the form

 exp1 ? exp2 : exp3

 where exp1, exp2 and exp3 are all expressions.

Here first the expression exp1 was evaluated, if it is true, exp2 is evaluated. If it is false, exp3 is
evaluated. However, it has to be clearly understood that among both exp2 and exp3, only one of
it is evaluated at any time.

Example:

 a=10;

 b=15;

 x=(a>b) ? a : b;

In this example, x will be assigned the value b.

Bitwise operators:

These operators are act on individual bits(0 and 1) of the operands. They act on only interger
datatypes i.e. byte, short, int, long. There are different types of operators, they are:

1. Bitwise Complement operator(~)
2. Bitwise and operator (&)
3. Bitwise or operator (|)
4. Bitwise xor operator (^)
5. Bitwise left shift operator (<<)
6. Bitwise right shift operator (>>)

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 6

Bitwise Complement operator (~)

This operator gives the complement form of a given number. This operator symbol is ~ which is
pronounced as tilde.

Complement form of a positive number can be obtained by changing 0’s as 1’s and visa versa.

Bitwise and operator (&):

This operator performs and operations on the individual bits of the number. The symbol for the
operator is (&) which is called ampersand.

If int X=10, Y=11 then find the value of X&Y.

 X=10=0000 1010

 Y=11=0000 1011

 X&Y=00001010

From the above table, by multiply the bits, we get X&Y=0000 1010.

Bitwise or operator (|)

This operator performs or operations on the individual bits of the number. The symbol for the
operator is (|) which is called pipe.

If int X=10, Y=11 then find the value of X|Y.

 X=10=0000 1010

 Y=11=0000 1011

 X|Y=00001011

From the above table, by adding the bits, we get X|Y=0000 1011.

X Y X&Y

1 1 1

1 0 0

0 1 0

0 0 0

X Y X|Y

1 1 1

1 0 1

0 1 1

0 0 0

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 7

Bitwise xor operator (^)

This operator performs (exclusive or) xor operations on the individual bits of the number. The
symbol for the operator is (^) which is called cap,carat.

If int X=10, Y=11 then find the value of X^Y.

 X=10=0000 1010

 Y=11=0000 1011

 X^Y=00000001

From the above table, when odd numbers of 1’s are there, we can get a 1 in the output.

Bitwise left shift operator (<<)

The left shift operator will shift the bits towards left for the given number of times.

int a=2<<1;

Let’s take the binary representation of 2 assuming int is 1 byte for simplicity.

Position 7 6 5 4 3 2 1 0

Bits 0 0 0 0 0 0 1 0

Now shifting the bits towards left for 1 time, will give the following result

Position 7 6 5 4 3 2 1 0

Bits 0 0 0 0 0 1 0 0

Now the result in decimal is 4. You can also note that, 0 is added as padding the in the position 0.

Bitwise right shift operator (>>)

The right shift operator will shift the bits towards right for the given number of times.

int a=8>>1;

Let’s take the binary representation of 8 assuming int is 1 byte for simplicity.

X Y X^Y

1 1 0

1 0 1

0 1 1

0 0 0

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 8

Position 7 6 5 4 3 2 1 0

Bits 0 0 0 0 1 0 0 0

Now shifting the bits towards right for 1 time, will give the following result

Position 7 6 5 4 3 2 1 0

Bits 0 0 0 0 0 1 0 0

Now the result in decimal is 4. Right shifting 1 time, is equivalent to dividing the value by 2.

Write a program using bitwise operators:

class bits

{

 public static void main(String[] args)

 {

 byte x,y;

 x=10;

 y=11;

 System.out.println("~x=" +(~x));

 System.out.println("x&y=" +(x&y));

 System.out.println("x|y=" +(x|y));

 System.out.println("x^y=" +(x^y));

 System.out.println("x<<2=" +(x<<2));

 System.out.println("~x>>2" +(x>>2));

 }

}

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 9

OUTPUT:

Special Operators:

a. Instanceof Operator
b. Dot(.) Operator

Instanceof Operator

In java instanceof operator is used to test whether the object is an instance of the
specified type (class or subclass or interface).

 This operator returns “true” if an object given at the left hand side is an instance of the class
given at right hand side. Otherwise, it returns “false”.

class person
{
 String name;
 int age;
 void talk()
 {
 System.out.println("my name is"+ name);
 System.out.println("my age is"+ age);
 }
}

 class Demo1

{
 public static void main(String[] args)
 {
 person raju=new person();
raju.name="ravindra";
raju.age=29;
raju.talk();

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 10

boolean k=raju instanceof person;
System.out.println(k);
 }
}

Dot operator

This operator is used to access the variables and methods of a class.

Example 1

Syntax:

Object name. variable name

raju.name

Here we are accessing the variable “name” of the “raju” object

Example 2

Syntax:

Object name. method name

raju.talk()

Here we are accessing the method “talk()” of the “raju” object.

This operator also can be used to access classes, packages etc.

Arithmetic Expression

 An Arithmetic expression is a combination of variables and operators arranged as per the
syntax of the language. Java can handle any complex mathematical expression.

 Expressions are evaluated using an assignment statement of the form

 variable=expression;

variable is any valid java variable name. when the statement is encountered, the expression is
evaluated first and the result then replaces the previous value of the variable on the left hand
side.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 11

Example:

 x=a*b-c;

Precedence of Arithmetic Operators

 An arithmetic expression without any parentheses will be evaluated from left to right
using the rules of precedence of operators. There are two distinct priority levels of arithmetic
operators in java.

 High Priority * / %

 Low Priority + -

The basic evaluation procedure includes two left to right passes through the expression. During
the first pass, the high priority operators are applied and during the second pass, the low priority
operators are applied. Consider the following evaluation statement

 x= a – b / 3 + c * 2 -1

when a=9, b=12 and c=3, the statement becomes

 x= 9 – 12 /3 + 3 *2 -1

and is evaluated as follows.

First pass

 Step1: x=9-4+3*2-1 (12/3 evaluated)

 Step2: x=9-4+6-1 (3*2 evaluated)

Second pass:

 Step3: x=5+6-1 (9-4 evaluated)

 Step4:x=11-1 (5+6 evaluated)

 Step5: x=10 (11-1 evaluated)

Q. Explain about the type conversions in Expressions

Automatic Type Conversion

Java permits mixing of constants and variables of different types in an expression, but
during evaluation, it adheres to very strict rules of type conversion. If the two operands of an
expression are of different type, the lower type is automatically converted into the higher type
before the operation proceeds. The result is of the higher type.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 12

 The final result of an expression is converted to the type of variable on the left of the
assignment sign before assigning the value to it. However, the following changes are introduced
during the final assignment.

 Float to int causes truncation of fractional part.
 Double to float causes rounding of digits.
 Long to int causes dropping of the excess higher order bits.

The following table provides a reference for type conversion

 char byte short int long float Double
char int int int int long float double
byte Int Int int int long float double
short Int int int int long float double

int int int int int long float double
long long long long long long float double
float float float float Float float float double

double double double double double double double double

Casting a Value

 There are instance which need type casting than type conversion, i.e., there are instance
which are different from type conversion. The process of this conversion is known as casting a
value. The general form a cast is:

 (type-name) expression.

Example:

 Consider the ratio of females to males in a town

 ratio= female_number/ male_number;

 Since female_number and male_number are declared as integers in the program, the
decimal part of the result of the division would be lost and ratio would not represent a correct
result. This problem can be solved by converting locally one of the variables to the floating
point as shown in below.

 ratio= (float)female_number/ male_number;

 The operator (float) converts the female_number to floating point for the purpose of
evaluation of the expression.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 13

Q. Explain the operator precedence and Associativity in java

 Each operator in java has a precedence associated with it. The precedence is used to
determine how an expression involving more than one operator is evaluated. The operators at the
higher level of precedence are evaluated first.

 The operators of the same precedence are evaluated either from left to right or from right
to left, depending on the level. This is known as the associativity property of an operator.

 The following table provides complex lists of operators, their precedence levels, and their
rules of association.

Operator Description Associativity Rank
.

()
[]

Member selection
Function call

Array element reference

Left to Right 1

-
++
--
!
~

(type)

Unary minus
Increment
Decrement

Logical negation
Ones complement

Casting

Right to left 2

*
/

%

Multiplication
Division
Modulus

Left to right 3

+
-

Addition
Subtraction

Left to right 4

<<
>>

>>>

Left shift
Right shift

Right shift with zero fill

Left to right 5

<
<=
>

>=
instanceof

Less than
Less than or equal to

Greater than
Greater than or equal to

Type comparison

Left to right 6

==
!=

Equality
In equality

Left to right

7

&
^
|

&&
||
?:
=

op=

Bitwise AND
Bitwise XOR
Bitwise OR

Logical AND
Logical OR

Conditional Operator
Assignment operator

Shorthand assignment

Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left

8
9
10
11
12
13
14

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 14

Consider the following conditional statement

 if(x==10 + 15 && y<10)

the precedence rules says that the addition operator has high priority than the logical operator
(&&) and the relational operators (== and <). Therefore, the addition of 10 and 15 is executed
first. This is equivalent to

 if (x==25 && y<10)

Assume that x=20 and y=5, then

X==25 is false and y< 10 is true

Finally we get,

 If(False && True)

 Because one of the conditions is false, the compound condition is false.

Q. Explain the Mathematical Functions in Java

 Java supports the basic mathematical functions through Math class defined in java.lang
package. The following table lists the mathematical functions defined in the Math class. These
functions are used as follows

 Math.function_name();

Ex:

 Double y=Math.sqrt(x);

Function Action
sin(x) Returns the sine of the angle x in radians
cos(x) Returns the cosine of the angle x in radians
tan(x) Returns the tangent of the angle x in radians
asin(y) Returns the angle whose sine is y
acos(y) Returns the angle whose cosine is y
atan(y) Returns the angle whose tangent is y

atan2(x,y) Returns the angle whose tangent is x/y
pow(x,y) Returns x raised to y (xy)
exp(x) Returns e raised to x (ex)
log(x) Returns the natural logarithm of x
sqrt(x) Returns the square root of x

round(x) Returns the integer closest to the argument

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 15

abs(a) Returns the absolute value of a
max(a,b) Returns the maximum of a and b
min(a,b) Returns the minimum of a and b

The following program illustrates the math functions supported by the java language.

Aim: To illustrates the use of mathematical functions supported by the java language.

Program:

class MathDemo

{

 public static void main(String args[])

 {

 double x;

 x=Math.max(22,23);

 System.out.println("The maximum among 22,33 is" + x);

 x=Math.sqrt(64);

 System.out.println("The square root of 64 is " + x);

 x=Math.abs(-29);

 System.out.println("The absolute value of -29 is " + x);

 }

}

Output:

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 1

Chapter-6

Decision Making and Branching

Introduction:

Generally a program executes its statements from beginning to end. But not many programs
execute all their statements in strict order from beginning to end. Most programs decide what to
do in response to changing circumstances. In a program, Statements may be executed sequentially,
selectively or iteratively. Every programming language provides constructs to support sequence,
selection or iteration.

When a program breaks the sequential flow and jumps to another part of the code, it is
called selection or branching.

When the branching is based on a particular condition, it is known as conditional
branching.

If branching takes place without any condition, it is known as unconditional branching.

Decision Making with If Statement:

An if statement tests a particular condition. If the condition is true then statement or set of

statements is executed. Otherwise (if the condition evaluates to false) then it will come out of loop.

The if statement may be implemented in different forms depending on the complexity of conditions

to be tested.

 Simple if statement

 If-else statement

 Nested if-else statement

 else if ladder

Simple If Statement: The syntax of the if statement is shown below

Syntax: if(expression)

 {

 Statements;

 }

Statement-x;

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 2

Where a statement may consist of a single statement, a compound statement, or nothing.

The expression must be enclosed in parenthesis. If the expression evaluates to true, the statement

is executed, otherwise ignored.

 Entry

Introduction:

 True

.

 False

 Next Statement

 Test
Expressio
n ?

 Statement-Block

 Statement-X

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 3

Example

We can take a look on a program which will display a message “Success” if a particular value is
greater than 5. It then displays a message “Executed successfully” and complete its execution.

Program

/*

 * FileName : SimpleIfStatementDemo1.java

 */

public class SimpleIfStatementDemo1

{

 public static void main(String args[])

 {

 //Declaring a variable "test" and initializing it with a value 10

 int test=10;

 //Checking if "test" is greater than 5

 if(test>5)

 {

 //This block will be executed only if "test" is greater than 5

 System.out.println("Success");

 }

 //The if block ends.

 System.out.println("Executed successfully");

 }

}

Output

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 4

This program outputs the message “Success” because the declared variable “test” has a value 10
which is greater than 5.

The if-else statement: The syntax of the if-else statement is the following:

 Syntax:

 if(condition)

 {

 Statement block 1;

 }

 else

 {

 Statement block2;

 }

 Statement-n

If the condition is true ,then the statement block1 and then statement-n and so on executed in order.

If the condition is false, statement block2 and then statement-n and so no are executed in order. In

either case, only one of the statement statement block1 or statement block2 is executed but not

both.

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 5

 Entry

 True False

Write a program to illustrate if else statement:

public class si
{

public static void main(String args[]){
 int a = 10;
 int b = 20;
 if(a>b)
 {
 System.out.println("a is greater than b");
 }
 else
 {
 System.out.println("b is less than a");
 }
}
}

Output:

Conditio

 Statement block 2

 Statement-n

 Statement block1

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 6

Nesting if-else statements:

 When a series of decisions are involved, we may have to use more than one if statements

in nested as follows.

Syntax:

 if(condition)

 {

 if(condition)

 {

 Statement block1;

 }

 else

 {

 Statement block 2;

 }

 }

 else

 {

 if(condition)

 {

 Statement block 3;

 }

 else

 {

 Statement block 4;

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 7

 }

 Statement-n;

Flow chart:

Eg:

Class ifelsenesting

{

 Public static void main(String args[])

 {

 int a=325,b=712,c=478;

 System.out.println(“largest value is:”);

 if(a>b)

 {

 if(a>c)

 {

 System.out.println(a);

 }

 else

 {

 System.out.println(a);

 }

 }

 else

 {

 if(b>c)

 {

 System.out.println(b);

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 8

 }

 else

 {

 System.out.println(c);

 }

 }

}

Output: Largest value is :712

else if ladder:

A common programming construct in the java is the if-else-if ladder , which is often also

called the if-else-if staircase because of it's appearance.

Syntax:

 if (condition1)

 statement1;

 else if (condition2)

 statement2;

 else if(condition3)

 statement3;

 …………………

 …………………

 else if(condition n)

 statement n;

 else

 default-statement;

statement-x;

 This construct is known as the else if ladder. The conditions are evaluated from the top

of the ladder. As soon as the true condition is found, the statement associated with it is executed

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 9

and the control is transferred to the statement-x. When all the n conditions becomes false, then the

final else containing the default-statement will be executed.

Flow chart:

Eg:

class ei
{
 public static void main(String args[])
 {

 int marks=70;

 if(marks>79)
 {
 System.out.println("honours");
 }
 else if(marks>59)
 {
 System.out.println(" I Division");
 }
 else if(marks>79)
 {
 System.out.println("II Division");
 }
 else
 {
 System.out.println(" Fail");
 }

 }
}
Output:

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 10

The Switch Statement:

 Java provides a multiple branch selection statement known as switch. This selection

statement successively tests the value of an expression against a list of integer or character

constants. When a match is found, the statements associated with that constant are executed.

Syntax:

switch(expression)

{

case value1:

 block-1

 break;

 case value2:

 block-2

 break;

 default:

 default-block

 break;

 }

Statement-x;

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 11

A switch statement is used for multiple ways selection that will branch to different code segments

based on the value of a variable or an expression. The optional default label is used to specify the

code segment to be executed. when the value of the variable or expression does not match with

any of the case values. if there is no break statement as the last statement in the code segment for

a certain case, the execution will continue on into the code segment for the next case clause without

checking the case value.

Flowchart:

Example:

class SwitchDemo
 {
 public static void main(String[] args)
 {

 int month = 8;
 switch (month)
 {

 PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 12

 case 1: System.out.println("January"); break;
 case 2: System.out.println("February"); break;
 case 3: System.out.println("March"); break;
 case 4: System.out.println("April"); break;
 case 5: System.out.println("May"); break;
 case 6: System.out.println("June"); break;
 case 7: System.out.println("July"); break;
 case 8: System.out.println("August"); break;
 case 9: System.out.println("September"); break;
 case 10: System.out.println("October"); break;
 case 11: System.out.println("November"); break;
 case 12: System.out.println("December"); break;
 default: System.out.println("Invalid month.");break;
 }
 }
}
Output:

The ?:Operator (or)conditional operator (or)ternary operator:

 This operator is called ternary operator because it acts on 3 variables. The other name

for this operator is conditional operator, since it represents a conditional statement. Two symbols

are used for this operator? and :

Syntax: Variable=expression1? expression2: expression 3

 First the compiler evaluates the expression1 if it is true expression 2 will be executed by

ignoring the expression 3 i.e, expression 2 will become the resultant value for the entire expression.

If the expression 1 is false expression 3 will be executed by ignoring expression 2 i.e, expression

3 will become the resultant value of the entire expression.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 1

Chapter-7

Decision Making and Looping

 The process of repeatedly executing a block of statements is known as looping.
The statements in the block may be executed any number of times, from zero to infinite
number of times. If a loop continues forever, it is called an infinite loop.

 The Java Language provides three constructs for performing loop operations.
They are

 while construct
 do construct
 for construct

While statement

The basic format of the while statement is as follows

 Initialization:
 while (test condition)
 {
 Body of the loop;
 }

The while is an entry controlled loop statement. The test condition is evaluated
and if the condition is true, then the body of the loop is executed. After execution of the
body, the test condition is once again evaluated and if it is true, the body is executed
once again. This process is repeated until the test condition returns a false value.

Consider the following code segment

……………..
…………..
sum=0;
n=1;
while(n<=10)
{
 sum=sum+n*n;

n=n+1;
}
System.out.println(“Sum=” + sum);
………………

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 2

……………..
The body of the loop executed 10 times from n=1,2,…10 each time adding the

square of the value of n, which is incremented inside the loop.

The following program illustrates the use of while loop in java.

Aim: To read a string from the keyboard character by character and to display it on the
screen.

Program:

import java.io.*;
class WhileTest
{
 public static void main(String[] args) throws IOException
 {
 int i=1;
 while(i<=10)
 {
 System.out.println("i=" + i);
 i++;
 }
 }
}
Output:

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 3

The do..while Statement

 The following is the syntax for the do statement

 Initialization;
 do
 {
 Body of the loop;
 } while (test condition);
 On reaching the do statement, the program proceeds to execute the body of the
loop first. At the end of the loop, the test condition in the while statement is evaluated.
If the condition is true, the program continues to evaluate the body of the loop once
again. This process continues as long as the condition is true. When the condition is
false, the loop will be terminated.

 Since the test condition is evaluated at the bottom of the loop, the do…while
constructs provides an exit-controlled loop and therefore the body of the loop is always
executed at least once.

 Consider an example

…………..
…………
i=1;
sum=0;
do
{
 sum=sum+I;
 i=i+2;
}while (sum<40 || i<10);
The loop will be executed as long as one of the two relations is true.

The following program illustrates the do…while construct

Aim: To display the multiplication table.

Program:

class dow {

 public static void main(String args[]){

 int i=0;

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 4

 do{

 System.out.println(i);

 i++;

 }while(i<10);

 }

}

Output:

Differenece between while and do…while constructs

while Do…while
It is a looping construct that will execute
only if the test condition is true.

It is a looping construct that will execute
at least once even if the test condition is
false.

It is entry controlled loop. It is an exit controlled loop.
It is generally used for implementing
common looping situations.

It is typically used for implementing
menu based programs where the menu
is required to be printed at least once.

The for statement

 The for loop is another entry controlled loop that provides a more concise loop
control structure. The general form of the loop is as follows.

 for(initialization ; test condition ; increment/decrement)
 {

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 5

 Body of the loop;
 }
The execution of the for statement is as follows

1. initialization of the control variable is done first, using assignment statements
such as i=1 and count=0. The variables I and count are known as loop-control
variables.

2. The value of the control variable is tested using the test condition. If the test
condition is true, the body of the loop is executed; otherwise the loop is
terminated.

3. When the body of the loop is executed, the control is transfer back to the for
statement after evaluating the last statement in the loop. Now, the control
variable is incremented or decrement.

Consider the following segment of a program

 for(x=0; x<=9; x++)
 {
 System.out.println(x);
 }
 This for loop is executed 10 times and prints the digits 0 to 9.

Additional Features of a for Loop

The for loop has several capabilities that are not found in other loop constructs.
They are
1. More than one variable can be initialized at a time in the for statement. The

statements
p=1;
for(n=0;n<10;n++)
Can be written as
for(p=1,n=0;n<10;n++)

2. Like the initialization section, the increament section may also have more
than one part. For example
for(n=1,m=50;n<=m;n++,m--)

3. The test condition may have any compound relation and the testing need not
be limited only to the control variable. Consider the following

sum=0;

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 6

for(i=1;i<20&&sum<100;i++)
{
 ………………
 ……………..
}

4. Another unique aspect of for loop is that one or more sections can be omited,
if necessary. Consider the following example
…………..
………….
m=5;
for(; m!=100 ;)
{
 System.out.println(m);
 m=m+5;
}
………….
………….

Nesting of for loops

 Nesting of loops means one for statement within another for statement, is
allowed in java. The for loops can be nested as follows

Aim: Program to display a right angled triangle of @

Program:

class NestedLoop
{
 public static void main(String[] args)
 {
 int i,j;
 System.out.println("The right angle triangle of @ is shown in below:\n");
 for(i=1;i<=9;i++)
 {
 for(j=1;j<=i;j++)
 {
 System.out.print("@");
 }
 System.out.println(" ");

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 7

 }
 }
}
Output:

The Enhanced for loop

 The enhanced for loop, also called for each loop. This feature helps us to retrieve
the array of elements efficiently rather than using array indexes.

The Enhanced for loop takes the following form

for(Type Identifier : Expression)
{
 //Statements
}
The following program illustrates the use of Enhanced for loop.

Write a java program using enhanced for loop.

import java.util.*;
import java.lang.*;

class foreach
{
 public static void main(String[] args)
 {
 int arr[]={1,2,3,4};
 for(int i : arr)

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 8

 {
 System.out.println(i);
 }
 }
}

Output:

Aim: To find an element in the array of elements.
Program:

import java.io.*;
class EnhancedFor
{
 int a[]={10,20,30,40,50};
 int n;
 boolean flag=false;

 void getData(int x)
 {
 n=x;
 }
 void search()
 {
 for(int i:a)
 {
 if(i==n)
 {
 flag=true;
 break;
 }

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 9

 else
 {
 flag=false;
 }
 }//for
 if(flag)
 {
 System.out.println("The search element is found");
 }
 else
 {
 System.out.println("The search element is not found");
 }
 }//search()
 public static void main(String[] args) throws IOException
 {
 int n;
 DataInputStream in=new DataInputStream(System.in);
 System.out.println("Enter the search Element");
 n=Integer.parseInt(in.readLine());
 EnhancedFor o1=new EnhancedFor();
 o1.getData(n);
 o1.search();
 }//main()
}//class
Output:

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 10

Jumps in Loops

 Java permits a jump from one statement to the end or beginning of a loop as well
as a jump out of a loop.

Jumping Out of loop (break statement)

 When the break statement is encountered inside a loop, the loop is immediately
exited and the program continues with the statement immediately following the loop.
When the loops are nested, the break would only exit from the loop containing it. The
break will exit only a single loop.

This statement can also be used within while, do or for loops as illustrated below.

Skipping a part of a Loop (continue statement)

 Like the break statement java supports another similar statement called
continue statement. Whenever the continue statement is encountered within the loop,
that causes the loop to be continued with the next iteration after skipping any
statements in between. The continue statement tells the compiler “ SKIP THE
FOLLOWING STATEMENTS AND CONTINUE WITH THE NEXT ITERATION”.

The use of the continue statement in loops is illustrated below.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 11

Labeled Loops

 In java, we can give a label to a block of statements. A label is any valid java
variable name. To give a label to a loop, place it before the loop with a colon at the end.
Example

Loop1: for(…………..)
 {
 ……………..
 …………….
 }
 ……………
 A simple break statement causes the control to jump outside the nearest loop
and a simple continue statement restarts the current loop. If we want to jump outside a
nested loops or to continue a loop that is outside the current one, then we may have to
use the labeled break and labeled continue statements.

Example:

Here, the continue statement terminates the inner loop when n=m and continues
with the next iteration of the outer loop.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 12

The following is the program that illustrates the concept of labeled break and continue

statements.

Aim: To display a right angle triangle of *.

Program

class LabeledLoop
{
 public static void main(String[] args)
 {
 int i,j;
 System.out.println("The right angle triangle of * is shown in below:\n");

 Loop1: for(i=1;i<=100;i++)
 {
 System.out.println(" ");
 if(i>=10)
 break;
 for(j=1;j<=100;j++)
 {
 System.out.print("*");
 if(i==j)
 continue Loop1;
 }//inner for
 }//outer for
 System.out.println("Termination by break");
 }
}
Output:

PROGRAMMING IN JAVA

Chapter-8

Classes, Objects and Methods

Defining a Class

Definition

The process of binding the data members and member functions into a single unit is
called as a class. In other words a class is a user defined data type. Once the class type has been
defined, we can create “variables” of that type. In java these variables are termed as instances of
classes, which are the actual objects.

The basic form of a class definition is as follows

 class clsname [extends superclsname]

 {

 [fields declaration];

 [methods declaration];

 }

Here, clasname and superclsname are any valid java identifiers. The keyword extends
indicates that the properties of the superclsname class are extended to the clsname class. This
concept is called as inheritance.

Everything inside the square brackets is optional. This means that the following would be
a valid class definition.

class clsname

{

}

Here, the body of the class is empty, this does not contain any properties and therefore
cannot do anything.

Fields Declaration

 Data is encapsulated in a class by placing data fields inside the body of the class
definition. These variables are called instance variables because they are created whenever an

PROGRAMMING IN JAVA

object of the class is instantiated. Instance variables are also known as member variables. We can
declare the instance variables exactly the same way as we declare the local variables.

Example:

class Rectangle
{
 int length;
 int width;
}

The class Rectangle contains two integer type instance variables. Here, these variables
are only declared and therefore no storage space has been created in the memory.

Methods Declaration

 A class with only data fields has no life. The objects created by such a class cannot
respond to any messages.

 Methods are declared inside the body of the class but immediately after the declaration of
instance variables. The general form of a method declaration is as follows.

 type methodname (parameter_list)
 {
 Method-body;
 }
Method declaration have four basic parts:

 The name of the method (methodname).
 The type of the value the method returns (type).
 A list of parameters (parameter_list)
 The body of the method.

Let us consider a Rectangle class example as follows

class Rectangle
{
 int length;
 int width;
 void getData(int x, int y) // Method declaration
 {
 length=x;
 width=y;

PROGRAMMING IN JAVA

 }
}

Creating Objects

 An instance of a class is called as an object. An object in java is essentially a block of
memory that contains space to store all the member variables. Crating an object is also referred
to as instantiating an object.

 Objects in java are created using the new operator. The new operator creates an object of
the specified class and returns a reference to that object.

 Here is an example of creating an object of type Rectangle.

Rectangle o1; //declaring the object

o1=new Rectangle(); // instantiate the object

The first statement declares a variable to hold the object reference and the second one
actually assigns the object reference to the variable. The variable o1 is now an object of the
Rectangle class.

Both statements can be combined into one as shown below.

Rectangle o1=new Rectangle();

The method Rectangle () is the default constructor of the class. We can create any
number of objects of Rectangle. For example

 Rectangle o1= new Rectangle();

 Rectangle o2= new Rectangle();

It is important to understand that each object has its own copy of the instance variable of
its class. This means that any changes to the variables of one object can have no effect on the
variables of another.

 It is also possible to create two or more references to the same object as shown in below.

Rectangle R1=new Rectangle ();

Rectangle R2=R1;

PROGRAMMING IN JAVA

Accessing class members

 To access the instance variables and the methods of a class we must use the concerned
object and the dot (.) operator as shown in below.

objname.variablename=value;

objname.methodname(parameter_list);

 Here, objname is the name of the objet and variablename is the name of the instance
variable inside the object that we wish to access.

 The following is the program that illustrates the concepts discussed so far.

Aim: To find the area of a rectangle.

Program

//RectArea.java

class Rectangle
{
 int len,wid; // Declaration of variables
 void getData(int x, int y) //Declaration of method
 {
 len=x;
 wid=y;
 }
 int rectArea() //Definition of another method
 {
 int area=len*wid;
 return (area);
 }
}
class RectArea // class with main method
{
 public static void main(String args[])
 {
 int area1, area2;
 Rectangle r1=new Rectangle(); // Creating objects
 Rectangle r2=new Rectangle();

 r1.len=15; //Accessing Variables
 r1.wid=10;

PROGRAMMING IN JAVA

 area1=r1.len * r1.wid;

 r2.getData(20,12); //Accessing methods
 area2=r2.rectArea();

 System.out.println("Area1=" + area1);
 System.out.println("Area2=" + area2);
 }
}
Output

Q. Explain about the Constructors in Java.

Constructor:

 Constructors are special methods having the same name as the class itself. They do not
have a return type, not even void.

 A Constructor initializes an object automatically when the object is created. Constructors
can be overloaded like methods. The constructor is automatically called when an object is
created.

 Java does three operations when new is used to create an instance of a class.

 Allocates the memory for the object.
 Initializes that objects instance variables, either to initial values or to a default.
 Calls the constructor of the class.

Constructors look a lot like regular methods with two basic differences.

 Constructors always have the same name as that of class.
 Constructor does not have a return type (even void)

PROGRAMMING IN JAVA

The following program illustrates the concept of constructors in java.

Aim: To find the area of a rectangle.

Program

//Rectangle.java
class Rectangle
{
 int len;
 int wid;
 Rectangle(int x, int y)
 {
 len=x;
 wid=y;
 }
 int area()
 {
 return (len*wid);
 }
 public static void main(String[] args)
 {
 //Constructor is implicitly called when we create an object
 Rectangle r1=new Rectangle(10,20); //calling constructor
 int x=r1.area(); //calling the method
 System.out.println("Area=" + x);
 }
}
Output

PROGRAMMING IN JAVA

Q. Explain about the method overloading in java.

 In java, it is possible to create methods that have the same name, but different parameter
list and different definitions. This is called method overloading.

 Method overloading is used when objects are required to perform similar tasks but using
different input parameters. When we call a method in an object, java matches up the method
name first and then number and type of parameters to decide which one of the definitions to
execute. The methods return type does not play any role in this.

 The following program illustrates the concept of method overloading in java.

Aim: To find the sum of two integers, two float values, two double values and two characters

Program

//MethodOverload.java
class MethodOverload
{
 int sum(int x,int y)
 {
 int z;
 z=x+y;
 return z;
 }
 double sum(double x, double y)
 {
 double z;
 z=x+y;
 return z;
 }
 int sum(char x, char y)
 {
 int z;
 z=x+y;
 return z;
 }
 public static void main(String[] args)
 {
 MethodOverload o1=new MethodOverload();
 System.out.println("The integer sum is:" + o1.sum(10,20));
 System.out.println("The double sum is:" + o1.sum(10.5,12.5));
 System.out.println("The character sum is:" +o1.sum('a','b'));

PROGRAMMING IN JAVA

 }
}
Output

Q. Explain about the Constructor overloading in java.

 Like methods, constructors can also be overloaded. Appropriate constructor is called as
per the parameters we pass at the time of object creation.

 In the following program, the constructor Demo() is overloaded 3 times.

Aim: To illustrate the concept of constructor overloading.

Program

//Demo.java
class Demo
{
 int x,y;
 Demo() // Default constructor
 {
 x=10;
 y=20;
 System.out.println("From default constructor");
 }
 Demo(int a) //Single parameterized constructor
 {
 x=a;
 y=a;
 System.out.println("From Single parameterized constructor");
 }
 Demo(int a, int b) //Double parameterized constructor
 {

PROGRAMMING IN JAVA

 x=a;
 y=b;
 System.out.println("From double parameterized constructor");
 }
 void display()
 {
 System.out.println("The values are, x= " + x + " and y=" + y);
 }
 public static void main(String[] args)
 {
 Demo d1=new Demo(); //calling default constructor
 d1.display();
 Demo d2=new Demo(30); // calling Single parameterized constructor
 d2.display();
 Demo d3=new Demo(40,50); //calling double parameterized constructor
 d3.display();
 }
}

Output

PROGRAMMING IN JAVA

Q. Explain about the static members in java.

static variable

 It is a variable which belongs to the class and not to object(instance)
 Static variables are initialized only once, at the start of the execution. These variables

will be initialized first, before the initialization of any instance variables
 A single copy to be shared by all instances of the class
 A static variable can be accessed directly by the class name and doesn’t need any object

The following is the syntax for accessing a static variable

Syntax

 <class-name>.<variable-name>

static method

 It is a method which belongs to the class and not to the object(instance)
 A static method can access only static data. It cannot access non-static data (instance

variables)
 A static method can call only other static methods and cannot call a non-static method

from it.
 A static method can be accessed directly by the class name and doesn’t need any object

The following is the syntax for accessing a static variable

Syntax : <class-name>.<method-name>

Side Note

main method is static , since it must be be accessible for an application to run , before any
instantiation takes place.

The following program illustrates the concept of static members in java.

Aim: To perform the mathematical operations

Program:

//MathApplication.java

class MathOperation
{
 static float mul(float x, float y)
 {

PROGRAMMING IN JAVA

 return x*y;
 }
 static float divide(float x, float y)
 {
 return x/y;
 }
}
class MathApplication
{
 public static void main(String[] args)
 {
 float a=MathOperation.mul(4.0f,5.0f);
 float b=MathOperation.divide(a,2.0f);
 System.out.println("Multiplication of 4.0 and 5.0 is:"+ a);
 System.out.println("Division of " + a + " and 2.0 is: " + b);
 }
}
Output:

Q. Explain about the Nesting of methods in java.

 A method can be called by using only its name by another method of the same class. This
is known as nesting of methods.

 The following program illustrates the concept of Nesting of methods in java.

Aim: To find the largest of two numbers.

Program:

//Nesting.java
class Nesting
{
 int m,n;
 Nesting(int x, int y)
 {
 m=x;
 n=y;
 }

PROGRAMMING IN JAVA

 int largest()
 {
 if (m>n)
 return m;
 else
 return n;
 }
 void display()
 {
 int large=largest();
 System.out.println("Largest value=" + large);
 }
 public static void main(String[] args)
 {
 Nesting o1=new Nesting(10,20);
 o1.display();
 }
}
Output:

Q. Explain the Inheritance in java.

Definition:

The process of obtaining the data members and member functions from one class to
another class is known as Inheritance.

The class which is giving data members and member functions to some other class is
known as base/ super / parent class.

The class which is retrieving or obtaining the data members and member functions is
known as derived/sub/child class.

A Derived class contains some of features of its own plus some of the data
members from base class.

PROGRAMMING IN JAVA

Advantages of Inheritance

 Application development time is less.
 Application amount of memory space is less.
 Redundancy (Repetition) of the code is reduced.

Syntax for INHERITING the features from base class to derived class:

class <clsname-2> extends <clsname-1>
{
 Variable declaration;
 Method definition;
}

Extends is a keyword which is used for inheriting the data members and methods from
base class to the derived class and it also improves functionality of derived class.

Types of Inheritances (Reusable Techniques)

Based on getting the features from one class to some other class, in java we have the
following types of reusable techniques.

 Single Inheritance (only one super class)
 Multilevel Inheritance (several super classes)
 Multiple Inheritance (several super class, many sub classes)
 Hierarchical Inheritance (one super class, many sub classes)

Single Inheritance

 It is one it contains a single base class and a single derived class. It is shown in below.

PROGRAMMING IN JAVA

The following program illustrates the concept of Simple Inheritance

Aim: Program to find the area of the room and the volume of a bed room.

Program

//InheritTest.java

class Room
{
 float len, bre;
 Room(float x, float y)
 {
 len=x;
 bre=y;
 }
 float roomArea()
 {
 return (len*bre);
 }
}
class BedRoom extends Room
{
 float hei;
 BedRoom(float x, float y, float z)
 {
 super(x,y);
 hei=z;
 }
 float volume()
 {
 return (len*bre*hei);
 }
}
class InheritTest
{
 public static void main(String args[])
 {
 BedRoom r1=new BedRoom(12.2f,15.2f,10.3f);
 float area=r1.roomArea();
 float vol=r1.volume();

PROGRAMMING IN JAVA

 System.out.println("The area of the room is: " + area);
 System.out.println("The volume of the bed room is: " + vol);
 }
}
Output:

Multilevel Inheritance

 It is one in which it contains one base class and one derived class and multiple
intermediate base classes.(An intermediate base class is one, in one context it acts as a derived
class, in another context the same class acts as a base class). It is shown in below.

PROGRAMMING IN JAVA

Multiple Inheritance

 It is one in which it contains multiple base classes and a s ingle derived class. It is shown
in below.

 The concept of multiple inheritance is not supported in java directly but it can be
supported through the concept of interfaces.

Hierarchical Inheritance

 It is one in which there exists a single base class and multiple derived classes. It is shown
in below.

PROGRAMMING IN JAVA

Q. Explain about the super keyword in java.

Subclass Constructor (‘super’ keyword)

 A Subclass constructor is used to construct the instance variables of both the subclass and
the super class. The subclass constructor uses the keyword super to invoke the constructor
method of the super class. The super keyword is used subject to the following conditions.

 super may only be used within a subclass constructor method.
 The call to super class constructor must appear as the first statement within the subclass

constructor.
 The parameters in the super call must match the order and type of the instance variables

declared in the super class.

Q. Explain about the method overriding in java.

 The process of redefining the same method for many number of implementations is
called as method overriding.

 The method overriding is possible by defining a method in the sub class that has the same
name, same arguments and same return type as a method in the super class.

Method Overriding = Method Heading is same + Method body is different.

The following program illustrates the concept of method overriding

Aim: To illustrate the concept of method overriding in java.

Program:

//OverrideTest.java
class Super
{
 int x;
 Super(int x)
 {
 this.x=x;
 }
 void display() // method defined
 {
 System.out.println("The value of x at super is: " + x);
 }
}
class Sub extends Super
{
 int y;

PROGRAMMING IN JAVA

 Sub(int x, int y)
 {
 super(x);
 this.y=y;
 }
 void display() //method defined again
 {
 System.out.println("The value of x at sub class is: " + x);
 System.out.println("The value of y at sub class is: " + y);
 }
}
class OverrideTest
{
 public static void main(String args[])
 {
 Sub s1=new Sub(100,200);
 s1.display();
 }
}
Output:

Q. Explain about the final variables, final methods and final classes in java.

Final variables and methods

 All methods and variables can be overridden by default in subclasses. If we wish to
prevent the subclasses from overriding the members of the super class, we can declare them as
final using the keyword final as a modifier. For example

 final int size=100;

 final void showStatus()

 {

 }

PROGRAMMING IN JAVA

 Making a method as final ensures that the functionality in this method will never be
altered in any way. Similarly, the value of a final variable can never be changed.

Final class

 If we don`t want to give features of base class to derived class then the definition of the
base class must be made as final.

Syntax: final class <clsname>

{

}
Example:

 final class Personal
 {
 int idno;
 int pinno;
 String pwd;

 }
 class Others extends Personal // error
 {

 }

Once the class is final, it never participates in inheritance process. In other words final
classes cannot be extended or inheritable.

Note:

 Final variable values cannot be modified.
 Final methods cannot be overridden.
 Final classes cannot be inheritable.

Q. Explain the abstract methods and classes in java.

Abstract Method or Undefined method

 An abstract method is one which does not contain any definition/body but it contains only
prototype/declaration.

 In order to make undefined methods as abstract methods, we need to write abstract
keyword before the method prototype.

Syntax for abstract method

 abstract return_type method_name (list_args);

PROGRAMMING IN JAVA

 When we are declaring a method as an abstract method, that means, we can indicate that
a method must always be redefined in a subclass, thus making overriding compulsory.

Example:

 abstract void sum();

 abstract void sum(int x, int y);

abstract class

 If a class is containing one or more abstract methods then that class should also be
declared as an abstract class.

Syntax for abstract class

abstract class <clsname>
{

 abstract return_type method_name (list_args);

}
Example

abstract class OPerationsDemo
{
 abstract void sum();
 abstract void mul();
}
 Here, the class OperationsDemo is an abstract class whose object is cannot be created
directly but we can create indirectly.

Q. How can we pass variable number of arguments for a method in java.

 (OR)

 Explain methods with varargs in java.

 Varargs represents variable length arguments in methods, which is one of the feature
introduced by J2SE 5.0.

 The varargs allows us to declare a method with the unspecified number of parameters for
a given argument. The varargs is identified by the type of an argument followed by the
ellipsis(…) and the name of a variable.

PROGRAMMING IN JAVA

Varagrs takes the following form

<access specifier> <static> void method_name (type…arguments)

{

}

In the above syntax, the method contains an argument called varargs in which type is the
return type of the argument, ellipses(…) is the key to varargs and arguments is the name of the
variable.

The following program illustrates the use of varargs in java.

Aim: To illustrate the use of varargs to print the String value passed as an argument to a method.

Program:

//Sample.java
class Sample
{
 Sample(String...a)
 {
 for(int i=0;i<=a.length-1;i++)
 {
 System.out.println(a[i]);
 }
 }
 public static void main(String args[])
 {
 Sample s1=new Sample(args);
 }
}
Output:

PROGRAMMING IN JAVA

Java Chapter-9

Arrays, Strings and Vectors

Arrays
Definition of an Array

• An array is a collection of same type variables referenced by a common name.

• All the elements in the array are of the same data type.

• Elements of an array are accessed individually using the index.

• The index value in every array starts with 0 (zero).

• An array can have one or more dimensions

One Dimensional Array

 A list of items can be given one variable name using only one subscript and such a
variable is called a single-dimensional variable or a one-dimensional array.

Creating an array

Creation of arrays is a two step process:

 1) Declaring an array variable.

 2) Allocating memory for the array.

Declaration of arrays

Syntax for declaring an array variable is:

 type array-name[];

 Here, type – Data type of the array and array-name is any valid identifier.

We can also declare an array in java as follows,

 Type[] array-name;

Examples:

 int number[];

 float average[];

 int[] counter;

Creation of arrays (Allocating the memory for an array)

 After declaring an array, we need to create it in memory. Java allows us to create arrays
using new operator only.

PROGRAMMING IN JAVA

Syntax for allocating memory for an array:

 array-name = new type[size];

 Here, new – keyword used to allocate memory for the array, and

 size – No of elements that the array will hold.

We can combine both the steps into a single one as shown below:

 type array-name[] = new type[size];

Examples:

 number=new int[5];

 average=new float[10];

The following figure illustrates the creation of an array in memory.

Initialization of Arrays

 Every array element is accessed using its index value.

 Syntax for initializing the array elements is:

array-name[index] = value;

Example:

int a[] = new int[3];

a[0] = 10;

a[1] = 20;

a[2] = 30;

PROGRAMMING IN JAVA

 There is another way for initializing array elements, right at the time of declaring the
array.

Example:

int a[] = {1,2,3,4,5};

In the above example, ‘a’ is an integer type array with size automatically set to 5. All the
5 elements are initialized with the values 1,2,3,4,5.

a[0] is 1, a[1] is 2, a[2] is 3, a[3] is 4 and a[4] is 5.

Array Length

 In java, all arrays store the allocated size in a variable named length. We can obtain the
length of the array using the length.

Example:

 int number[]={10,20,30,40,50};

int n=number.length;

The following java program illustrates the concept of single dimensional arrays.

Aim: To sort an array of elements

Program:

//ArrayDemo.java

import java.io.*;

class ArrayDemo

{

 public static void main(String[] args) throws IOException

 {

 int a[];

 int n,temp;

 DataInputStream in=new DataInputStream(System.in);

 System.out.println("Enter the array size.....");

 n=Integer.parseInt(in.readLine());

 a=new int[n];

 System.out.println("Enter the elements into the array");

 for(int i=0;i<=n-1;i++)

PROGRAMMING IN JAVA

 {

 a[i]=Integer.parseInt(in.readLine());

 }

 System.out.println("The array elements before Sorting are....");

 for(int i=0;i<=n-1;i++)

 {

 System.out.println(a[i]);

 }

 System.out.println("The array elements after Sorting are.....");

 {

 for(int i=0;i<=n-1;i++)

 {

 for(int j=i+1;j<=n-1;j++)

 {

 if(a[i]>=a[j])

 {

 temp=a[i];

 a[i]=a[j];

 a[j]=temp;

 }

 }

 }

 }

 for(int i=0;i<=n-1;i++)

 {

 System.out.println(a[i]);

 }

 }

}

PROGRAMMING IN JAVA

Output

Two-Dimensional Arrays

 Until now we have only seen one-dimensional array. But, an array in general can have
more than one dimension.

 Let’s see about two-dimensional arrays. For each dimension, we must specify an extra set
of [].

A two dimensional array is declared as shown below:

int a[][] = new int[3][4];

‘a’ is a two dimensional array which can hold 12 elements in 3 rows and 4 columns.

 Initializing two dimensional array elements is done using the index values:

 int a[][] = new int[2][2];

 a[0][0] = 1;

 a[0][1] = 2;

 a[1][0] = 3;

 a[1][1] = 4;

PROGRAMMING IN JAVA

The following is a representation of a two-dimensional array in memory.

• We can directly initialize the elements of a two dimensional array as shown below:

 int a[][] = { {1,2},{3,4}};

• Alternative way of declaring a two dimensional array is:

 int[][] a = {{1,2},{3,4}};

The following program illustrates the concept of two-dimensional arrays in java.

Aim: To read and print a matrix.

Program:

//ArrayDemo1.java

import java.io.*;

class ArrayDemo1

{

 public static void main(String[] args) throws IOException

 {

 int a[][];

 int m,n;

 DataInputStream in=new DataInputStream(System.in);

 System.out.println("Enter the number of rows of a matrix.....");

 m=Integer.parseInt(in.readLine());

 System.out.println("Enter the number of Columns of a matrix.....");

PROGRAMMING IN JAVA

 n=Integer.parseInt(in.readLine());

 a=new int[m][n];

 System.out.println("Enter the elements into the matrix....");

 for(int i=0;i<m;i++)

 {

 for(int j=0;j<n;j++)

 {

 a[i][j]=Integer.parseInt(in.readLine());

 }

 }

 System.out.println("The matrix elements are....");

 for(int i=0;i<=n-1;i++)

 {

 for(int j=0;j<n;j++)

 {

 System.out.print(" " + a[i][j]);

 }

 System.out.println("\n");

 }

 }//main()

}//ArrayDemo1

PROGRAMMING IN JAVA

Output

Variable Size Arrays

 Java treats multidimensional arrays as “arrays of arrays”. It is possible to declare a two-
dimensional array as follows.

 int x[][[]=new int[3][];

 x[0]=new int[2];

 x[1]=new int[4];

 x[2]=new int[3];

 These statements create a two-dimensional array as having different lengths for each row
as shown in below.

PROGRAMMING IN JAVA

Strings
• A string is a sequence/group of characters.

• Strings in java are implemented as objects of the class “String” unlike other languages
which implement strings using character arrays.

• Once a string (object) is created, we cannot change the characters in that string. Rather,
we can create a new string object.

• All kind of string operations like concatenation, copying, case inversion and substring
and many others can be performed on string objects.

• In java, Strings are class objects and implemented using two classes, namely, String
and StringBuffer.

• A java String is not a character array and is not NULL terminated.

 Strings may be declared and created as follows:

String stringname= new String(“string”);

Example:

String name=new String(“kanth”); //is same as

String name=”kanth”;

Like arrays, it is possible to get the length of string using the length method of the String class.

int len = name.length();

 Java string can be concatenated using the + operator.

E.g.: String firstname = “sri”;

 String lastname = “kanth”;

String name = firstname+lastname;

 (or) String name = “sri”+”kanth”;

String Arrays:

We can also create and use arrays that contain strings. The statement,

 String names[]=new String[3];

 will create an names array of size 3 to hold three string constants

PROGRAMMING IN JAVA

String Methods: (Methods of String class)

The String class defines a number of methods that allow us to accomplish a variety of
string manipulation tasks.

 Method Task

s2=s1.toLowerCase() converts the String s1 to all lowecase

s2=s1.toUpperCase() converts the String s1 to all Uppercase

s2=s1.replace(‗x‘,‘y‘); Replace all appearances of x with y

s2=s1.trim(); Remove white spaces at the beginning and end of String s1

s1.equals(s2); Returns ‗true‘ if s1 is equal to s2

s1.equalsIgnoreCase(s2) Returns ‗true‘ if s1=s2, ignoring the case of characters

 s1.length() Gives the length of s1

s1.CharAt(n) Gives nth character of s1

s1.compareTo(s2) Returns –ve if s1<s2, +ve if s1>s2, and 0 if s1 is equal s2

 s1.concat(s2) Concatenates s1 and s2

s1.indexOf(‗x‘) Gives the position of the first occurrence of ‗x‘ in string s1

s1.indexOf(‗x‘,n) Gives the position of ‗x‘ that occurs after nth position in
the string s1

The following program illustrates the concept of String class in java

Aim: To sort the string in Alphabetical order

Program:

//StringOrdering.java

//Alphabetical ordering of strings

class StringOrdering

 {

 public static void main(String args[])

 {

 String names[]={"india","usa","australia","africa","japan"};

 int size=names.length;

 String temp;

 for(int i=0;i<size;i++)

PROGRAMMING IN JAVA

 {

 for(int j=i+1;j<size;j++)

 {

 if(names[j].compareTo(names[i])<0)

 {

 temp=names[i];

 names[i]=names[j];

 names[j]=temp;

 }

 }

 }

 for(int i=0;i<size;i++)

 System.out.println(names[i]);

 }

}

Output:

StringBuffer Class :

 StringBuffer is a peer class of String. While String creates string of fixed length,
StringBuffer creates strings of flexible length that can be modified in terms of both length and
content. We can insert characters and substrings in the middle of a string, or append another
string to the end. Below, there are some of methods that are frequently used in string
manipulations.

PROGRAMMING IN JAVA

 Method Task

s1.setCharAt(n,‘x‘) Modifies the nth character to x

s1.append(s2) Appends the string s2 to s1 at the end

s1.insert(n,s2) Inserts the string s2 at the position n of the string s1

s1.setLength(n) Sets the length of the string s1 to n. If n<s1.length() s1 is
truncated .if n>s1.length() zeros are added to s1

The following program illustrates the concept of StringBuffer class in java.

Program:

class StringBufferConst

{

 public static void main(String args[])

 {

 StringBuffer buff1 = new StringBuffer();

 System.out.println("Length is: "+buff1.length());

 System.out.println("Capacity is: "+buff1.capacity());

 StringBuffer buff2 = new StringBuffer(20);

 System.out.println("Length is: "+buff2.length());

 System.out.println("Capacity is: "+buff2.capacity());

 StringBuffer buff3 = new StringBuffer("hello");

 System.out.println("Length is: "+buff3.length());

 System.out.println("Capacity is: "+buff3.capacity());

 CharSequence seq = "Hai";

 StringBuffer buff4 = new StringBuffer(seq);

 System.out.println("Length is: "+buff4.length());

 System.out.println("Capacity is: "+buff4.capacity());

 }

}

PROGRAMMING IN JAVA

Output:

Q. Explain about the Vectors in java?

 Vector is a class contained in java.util package.
 It is used to create a generic dynamic array known as vector that can hold objects of any

type and any number.
 The objects do not have to be homogeneous.

The vectors are created as follows

 Vector vect=new Vector(); // declaring without size.

 Vector list=new Vector(3);// declaring with size 3.

 A Vector without size can accommodate an unknown number of items.
 When a size is specified, this can be overlooked and a different number of items may be

put into the vector.

Advantages of Vectors over Arrays

1. It is convenient to use vectors to store objects.
2. A vector can be used to store a list of objects that may vary in size.
3. We can add and delete objects from the list as and when required.

A major constraint in using vectors is that we cannot directly store simple data type in a
vector, we only store objects. Therefore, we need to convert simple types to objects. This can be
done using the wrapper classes.

The vector class supports a number of methods that can be used to manipulate the vectors
created. The following table contains the important methods of a vector class.

PROGRAMMING IN JAVA

Method call Task Performed

List.addElement(item) Adds the item specified to the
list at the end.

List.elementAt(10) Gives the name of the 10th
object.

List.size() Gives the number of objects
present.

List.removeElement(item) Removes the specified item
from the list.

List.removeElementAt(n) Removes the item stored in the
nth position of the list.

List.removeAllElements() Removes all the elements in
the list.

List.copyInto(array) Copies all the elements from
list to array.

List.insertElementAt(item,n) Insert the item at the nth

position.

The following program illustrates the concept of Vectors in java.

Aim: To work with the Vectors and arrays in java

Program

//Program to work with vectors and arrays

import java.util.*;

class VectorDemo

{

 public static void main(String[] args)

 {

 Vector v=new Vector();

 int len=args.length;

 for(int i=0;i<len;i++)

 {

PROGRAMMING IN JAVA

 v.addElement(args[i]);

 }

 v.insertElementAt("COBOL",2);

 int size=v.size();

 String s[]=new String[size];

 v.copyInto(s);

 System.out.println("List of languages are");

 for(int i=0;i<size;i++)

 {

 System.out.println(s[i]);

 }

 }

}

Output

Wrapper classes

 The Vectors cannot handle the primitive data types like int, float, long , char and double.
Primitive data types may be converted into object types by using the wrapper classes contained
in the java.lang package. The following table shows the simple data types and their
corresponding wrapper classes.

PROGRAMMING IN JAVA

Simple Type Wrapper Class

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

The wrapper classes have a number of unique methods for handling primitive data types
and objects. They are listed in the following table.

Constructor calling Conversion Action

Integer intval=new Integer(i); Primitive integer to Integer
Object

Float floatval=new Float(f); Primitive float to Float
Object

Double dobval=new Double(d); Primitive double to
Double Object

Long longval=new Long(l); Primitive long to Long
Object

The following table shows the methods to conver Object numbers to Primitive Numbers
using typeValue() method

Method Calling Conversion Action

int i=intval.intValue(); Object to Primitive integer

float f=floatval.flaotValue(); Object to primitive float

long l=longval.longValue(); Object to primitive long

double d=dobval.doubleValue(); Object to primitive double

PROGRAMMING IN JAVA

The following table shows the methods to convert numbers to strings using toString()
method

Method Calling Conversion Action

str=Integer.toString(i); Primitive integer to string

str=Float.toString(f); Primitive float to string

str=Double.toString(d); Primitive double to string

str=Long.toString(l); Primitive long to string

The following table shows the methods to convert String objects to numeric Obejcts
using the static method ValueOf().

Method Calling Conversion Action

dobval=Double.ValueOf(str); Converts strings to
Double object

floatval=Float.ValueOf(str); Converts strings to Float
object

intval=Integer.ValueOf(str); Converts strings to
Integer object

longval=Long.ValueOf(str); Converts strings to Long
object

The following table shows the methods to convert Numeric Strings to Primitive Numbers
using Parsing Methods.

Method Calling Conversion Action

int i=Integer.parseInt(str); Converts string to primitive integer

long l=Long.parseLong(str); Converts string to primitive long

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 1

Chapter-10

Interfaces: Multiple Inheritance

An interface is a special case of abstract class, which contains all the final variables and
abstract methods (methods without their implementation). An interface specifies what a class
must do, but not how to do.

 Using the keyword interface, we can fully abstract a class interface from its
implementation. Interfaces are syntactically similar to classes, but they lack instance variable,
and their methods are declared without anybody. Once it is defined, any number of classes can
implement an interface. Also, one class can implement any number of interfaces.

Defining interface

 An interface is defined much like a class. This is the general form of an interface:

access interface interface_name
 {

 type final_varname1=value;
 type final_varname2=value;
. . . .
Returntype method-name1(parameter_list);
 returntype method-name2(parameter_list);

 }

Here, access is either public or not used. Interface_name can be any valid identifier.
Methods which are declared have no bodies. They end with a semicolon after the parameter list.
They are explicitly abstract methods. Variables are implicitly final and static, meaning they
cannot be changed by the implementing class. They must be initialized with a constant value. All
the methods and variable are implicitly public if the interface, itself is declared as public.

Example:
interface Item
{
 static final int code=1001;
 static final String name=”Fan”;
 void display(); //abstract method
}

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 2

Note that the code for the method is not included in the interface and the method
declaration simply ends with a semicolon. The class that implements this interface must define
the code for the method.

Q. Explain the differences between class and interface

class Interface
The members of a class can be constant or
variables.

The members of an interface are always
declared as constant, i.e., their values are
final.

The class definition can contain the code for
each of its methods. That is, the methods
can be abstract or non-abstract.

The methods in an interface are abstract in
nature,i.e., there is no code associated with
them. It is later defined by the class that
implements the interface.

It can be instantiated by declaring objects. It cannot be used to declare objects. It can
only implemented by a class.

It can use various access specifiers like
public, private, or protected.

It can only use the public access specifier.

Extending Interfaces

 Like classes, interfaces can also be extended. That is, an interface can be sub interfaced
from other interfaces. The new sub interface will inherit all the members of the super interface in
the manner similar to sub classes. This is achieved using the keyword extends as shown in
below.

interface name2 extends name1
{
 Body of name2;
}
Consider the following example,

interface ItemConstants
{
 int code=1001;
 String name=”Fan”;
}
interface Item extends ItemConstants
{
 void display();
}

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 3

class Display implements Item
{
 public void display()
 {
 System.out.println(code + “ “ + name);
 }
}
Implementing Interfaces

 Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, include the implements clause in a class definition, and then create the
methods defined by the interface. The general form of a class that includes the implements clause
looks like this:

 class class_name implements interface_name
 {
 Body of class name
 }
 Here the class class_name “implements” the interface interface_name.

When a class implements more than one interface, they are separated by a comma. The
implementation of interfaces can take various forms as illustrated below.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 4

The following program illustrates the concept of interfaces in java.

//InterfaceTest.java
interface Area //Interface defined
{
 final static float pi=3.14f;
 float compute(float x,float y);
}
class Rectangle implements Area
{
 public float compute(float x, float y)
 {
 return (x*y);
 }
}
class Circle implements Area
{
 public float compute(float x,float y)
 {
 return (pi*x*y);
 }
}
class InterfaceTest
{
 public static void main(String args[])
 {
 Rectangle rect=new Rectangle();
 Circle cir=new Circle();
 Area area;
 area=rect;
 System.out.println("Area of Rectangle=" + area.compute(10,20));
 area=cir;
 System.out.println("area of circle=" + area.compute(10,10));
 }
}

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 5

Output:

Accessing Interface Variables

Interfaces can also be used to declare a set of constants that can be used in different
classes. The constant values will be available to any class that implements the interface. The
values can be used in any method, as part of any variable declaration, or anywhere where we can
use a final value.

Example

 interface A
 {
 int m=10;
 int n=50;
 }
 class B implements A
 {
 void method(int size)
 {

 if(size<n)

 }
 }

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 6

Multiple Inheritance

It is one in which it contains multiple base classes and a s ingle derived class. It is not
possible through classes in java but it is possible through interfaces.

 The following program illustrates the concept of implementing multiple inheritance in
java.

Aim: Implementing the Multiple Inheritance in java

//Hybrid.java
//Program to illustrate the concept of Implementing the Multiple inheritance in java.
class Student
{
 int rno;
 void getNumber(int n)
 {
 rno=n;
 }
 void putNumber()
 {
 System.out.println("Roll No:" + rno);
 }
}
class Test extends Student
{
 float part1,part2;
 void getMarks(float m1,float m2)
 {
 part1=m1;
 part2=m2;
 }
 void putMarks()
 {
 System.out.println(" Marks Obtained");
 System.out.println("Part1=" + part1);
 System.out.println("Part2=" + part2);
 }
}
interface Sports
{
 float sportWt=6.0f;
 void putWt();
}
class Results extends Test implements Sports
{

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT 7

 float total;
 public void putWt()
 {
 System.out.println("Sports Wt= " + sportWt);
 }
 void display()
 {
 total=part1+part2+sportWt;
 putNumber();
 putMarks();
 putWt();
 System.out.println("Total score= " + total);
 }
}
class Hybrid
{
 public static void main(String args[])
 {
 Results std1=new Results();
 std1.getNumber(1234);
 std1.getMarks(27.5f,33.0f);
 std1.display();
 }
}

Output:

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 1

Java Chapter-11

Packages: Putting Classes Together

 A Package is a collection of classes, interfaces and sub-packages. A Sub package in turns
divides into classes, interfaces and sub-sub-packages, etc.

 Learning about JAVA is nothing but learning about various packages. By default one
predefined package is imported for each and every java program and whose name is java,lang.*.

In java the packages are classified into two categories. They are

 Java API packages (Predefined Packages)
 User defined Packages.

Java API packages

 Java API provides a large number of classes grouped into different packages according to
their functionalities. They are shown in below.

Package Name Package Description
Java.lang.* This package is used for achieving the language functionalities such

as conversion of data from string to fundamental data, displaying
the results on to the console, obtaining the garbage collector. This is
the package which is by default imported for each and every java
program.

Java.io.* This package is used for developing file handling applications, such
as , opening the file in read or write mode, reading or writing the
data, etc.

Java.awt.*
(abstract window toolkit)

This package is used for developing GUI(Graphical User Interface)
components such as buttons, check boxes, scroll boxes, etc.

Java.applet.* This package is used for developing browser oriented applications.
In other words this package is used for developing distributed
applications. An applet is a java program which runs in the context
of www or browser.

Java.util.* This package is used for developing quality or reliable applications
in java. This package contains various classes and interfaces which
improves the performance of J2ME applications. This package is
also known as collection framework.

Java.net.* This package is used for developing client server applications.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 2

Using System Packages

 The packages are organized in a hierarchical structure as shown in below.

 There are two ways of accessing the classes stored in a package. The first approach is to
use the fully qualified class name of the class that we want to use. This is done in the following
way.

Example: import java.awt.Colour

 Note that awt is a package within the package java and the hierarchy is representing by
separating levels with dot.

 The second approach is importing all the classes in a package at a time. This is done in
the following way.

Example: import java.awt.*;

The statements,

 import packagename.classname;
 Or
 import java.packagename.*;

 Are known as import statements and must appear at the top of the file, before any class
declarations, import is a keyword.
Note: Whenever we create user defined package statement as a part of java program, we must
use package statement as a first executable statement.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 3

Defining & creating package:

 Step1:

 Simply include a package command has the first statement in java source file. Any
class you declare within that file will belong to the specified package.

Syntax: package packagename;

 E.g.: package mypack;

 Step 2:

 Next define the class that is to be put in the package and declare it as public.

 Step 3:

Now store the classname.java file in the directory having the name same as package
name.

Step 4:

 File is to be compiled as fllows.

C:\> javac –d . classname.java

which creates .class file in the directory. Java also supports the package hierarchy, which
allows grouping related classes into a package and then grouping related packages into a larger
package. We can achieve this by specifying multiple names in a package statement, separated by
dot.

i.e., package firstpackage.secondpackage;

Accessing Package

 A java system package can be accessed either by using a fully qualified class name or by
using import statement. We generally use import statement.

Syntax:

 import pack1[.pack2][.pack3].classname;

 OR

 import pack1[.pack2][.pack3].*;

 Here pack1 is the top level package, pack2 is the package which is inside in pack1 and so
on. In this way we can have several packages in a package hierarchy. We should specify explicit
class name finally. Multiple import statements are valid. * indicates that the compiler should
search this entire package hierarchy when it encounters a class name.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 4

Importing Packages

Java includes import statement to bring certain classes or entire package into visibility. In
a java source file import statement occurs immediately following package statement and befor
any class definitions.

Syntax:

 import pack1[.pack2].(classname/*);

Here pack1 is the name of the top level package. Pack2 is the name of the subordinate
package separated by (.). finally classname / * indicates whether the java compiler should import
the entire package or a part of it.

EX:

 import java.util.Date.

Here java is main package; util is subordinate package, Date is the class belongs to util
package.

Example Program (User defined Package)

Step1:

PackEg.Java

package p1;

public class PackEg

{

 public void display()

 {

 System.out.println(“Welcome to java packages”);

 }

}

Step2:

 Compile the above program by using the following syntax.

C:\>javac –d . PackEg.java

Then it creates a directory having the name of the package (PackEg) and it contains the
.class file for our program.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 5

Step3:

PackDemo.java

import p1.PackEg

class Display

{

 public static void main(String args[])

 {

 PackEg p=new PackEg();

 p.display();

 }

}

Now we will get the output as “Welcome to Java Packages” as follows.

Static Import

 This feature eliminates the need of qualifying a static member with the class name. the
static import declaration is similar that of import. We can use the import statement to import
classes from packages and use them without qualifying the package. The syntax for using the
static import feature is as follows.

 import static package-name.subpackage-name.class-name.*;

The following program illustrates the concept of using the static import statement is as follows.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 6

import static java.lang.Math.*;

public class mathop

{

 public void circle(double r)

 {

 double area=PI * r*r;

 System.out.println("The area of the circle is : " + area);

 }

 public static void main(String args[])

 {

 mathop obj=new mathop();

 obj.circle(2.3);

 }

}

Output

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 1

Chapter-12

Multithreaded Programming

Multithreading:

It means handling multiple tasks simultaneously. Java supports multithreaded programs.
This means that we need not wait for the application to finish one task before another. For e.g.
we can listen to an audio clip while scrolling a page and at the same time download an applet
from a distant computer. This feature greatly improves the interactive performance of graphical
applications.

Thread:

 Thread is a sequence of instructions that is executed to define a unique flow of control.
It is the smallest unit of code.

Differences between Multithreading and Multitasking

Multithreading Multitasking
It is a programming concept in which a
program or process is divided into two or
more subprograms or threads that are
executed at the same time in parallel.

It is an operating system concept in which
multiple tasks are performed
simultaneously.

It supports execution of multiple parts of a
single program simultaneously.

It supports execution of multiple programs
simultaneously.

The processor has to switch between
different parts or threads of a program.

The processor has to switch between
different programs or processes.

It is highly efficient. It is less efficient in comparison to
multithreading.

A thread is the smallest unit in
multithreading.

A Program or process is the smallest unit in
a multitasking environment.

It helps in developing efficient programs. It helps in developing efficient operating
systems.

It is cost-effective in case of context
switching.

It is expensive in case of context switching.

Creating Threads:

Threads are implemented in the form of objects that contain a method called run(). The
run() method is the heart and soul of any thread. A typical run() would appear as follows.

public void run()
 {

……………. …………….
(statements for implementing thread)
…………….

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 2

}
The run () method should be invoked by an object of the concerned thread. This can be

achieved by creating the thread and initiating it with the help of another thread method called
start (). A new thread can be created in two ways:

1. By extending Thread class: Define a class that extends Thread class and override its run ()
method with the code required by the thread.

2. By implementing Runnable interface: Define a class that implements Runnable interface.
The Runnable interface has only one method, run (), that is to be defined in the method with the
code to be executed by the thread.

Extending Thread Class

We can make our class runnable as thread by extending the class java.lang.Thread. This
gives us access to all the thread methods directly. It includes the following steps:

1. Declare the class as extending the Thread class

2. Implement the run () method that is responsible for executing the sequence of code that the
thread will execute.

3. Create a thread object and call the start () method to initiate the thread execution.

The following program illustrates the concept of extending the thread class.

class A extends Thread
{
 public void run()
 {
 for(int i=1;i<=5;i++)
 {
 System.out.println("From Thread A: i =" + i);
 }
 System.out.println("Exiting from the Thread A");
 }
}
class B extends Thread
{
 public void run()
 {
 for(int j=1;j<=5;j++)
 {
 System.out.println("From Thread B: j =" + j);
 }

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 3

 System.out.println("Exiting from the Thread B");
 }
}
class ThreadTest
{
 public static void main(String args[])
 {
 A a=new A();
 B b=new B();
 a.start();
 b.start();
 System.out.println("Exiting from the main");
 }
}

Output:

Lifecycle of a Thread

 During the lifetime of a thread, there are many states it can enter. They include:

1. NewBorn State

2. Runnable State

3. Running State

4. Blocked State

5. Dead State

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 4

A thread is always in one of these five states. It can move from one state to another via a

variety of ways as shown in below figure.

NewBorn State
When we create a thread object, the thread is born and is said to be in newborn state. The

thread is not yet scheduled for running. At this state, we can do only one of the following things
with it:

 Schedule it for running using start() method

 Kill it using stop() method

Runnable State

 The runnable state means that the thread is ready for execution and is waiting for the
availability of the processor. If we want a thread to relinquish control to another thread to equal
priority before its turn comes, we can do so by using the yield()

 Running State

Running means that the processor has given its time to the thread for its execution. The
thread runs until it relinquishes control on its own or it is preempted by a higher priority thread.

Blocked State

 A thread is said to be blocked when it is prevented from entering into the runnable state
and subsequently the running s tate. This happens when the thread is suspended, sleping, or

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 5

waiting in order to satisfy certain requirements. A blocked thread is considered ―not runnable‖
but not dead and therefore fully qualified to run again.

Dead State

 Every thread has a lifecycle. A running thread ends its life when it has completed
executing its run() method. It is natural death. However, we can kill it by sending the stop
message to it at any state thus causing a premature death to it. It is done by stop() method.

The following program illustrates the concept of using the thread methods.

class A extends Thread
{
 public void run()
 {
 for(int i=1;i<=5;i++)
 {
 if(i==1)
 yield();
 System.out.println("From Thread A: i =" + i);
 }
 System.out.println("Exiting from the Thread A");
 }
}
class B extends Thread
{
 public void run()
 {
 for(int j=1;j<=5;j++)
 {
 System.out.println("From Thread B: j =" + j);
 if(j==3)
 stop();
 }
 System.out.println("Exiting from the Thread B");
 }
}
class ThreadMethods
{
 public static void main(String args[])
 {
 A a=new A();
 B b=new B();
 System.out.println("Thread A Started");
 a.start();
 System.out.println("Thread B Started");

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 6

 b.start();
 System.out.println("Exiting from the main");
 }
}
Output:

Thread Priority

 In java, each thread is assigned a priority, which effects the order in which it is scheduled
for running. The Threads of the same priority are given equal treatment by the java scheduler
and, therefore, they share the processor on a First-Come, First-Serve basis.

 Java permits us to set the priority of a thread using the setPriority() method as follows.

 ThreadName.setPriority(Number);

The Number is an integer value to which the threads priority is set. The Thread class defines
several priority constants.

 MIN_PRIOITY=1

 NORM_PRIORITY=5

 MAX_PRIORITY=10

 Whenever multiple Threads are ready for execution, the Java system chooses the highest
priority thread and executes it. For a thread of lower priority to gain control, one of the following
things should happen.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 7

1. It stops running at the end of run().
2. It is made to sleep using sleep().
3. It is told to wait using wait().

The following program illustrates the concept of thread priorities in java.

//Program to illustrates the concept of Thread Priority

//ThreadPriority.java

class A extends Thread
{
 public void run()
 {
 System.out.println("Thread A Started....");
 for(int i=1;i<=5;i++)
 {
 System.out.println("\t From Thread A : i= " + i);
 }
 System.out.println("Exit from Thread A");
 }
}
class B extends Thread
{
 public void run()
 {
 System.out.println("Thread B Started....");
 for(int j=1;j<=5;j++)
 {
 System.out.println("\t From Thread B : j= " + j);
 }
 System.out.println("Exit from Thread B");
 }
}
class C extends Thread
{
 public void run()
 {
 System.out.println("Thread C Started....");
 for(int k=1;k<=5;k++)
 {
 System.out.println("\t From Thread C : k= " + k);
 }
 System.out.println("Exit from Thread C");
 }
}

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 8

class ThreadPriorityDemo
{
 public static void main(String args[])
 {
 A threadA=new A();
 B threadB=new B();
 C threadC=new C();

 threadC.setPriority(Thread.MAX_PRIORITY);
 threadB.setPriority(threadA.getPriority()+1);
 threadA.setPriority(Thread.MIN_PRIORITY);

 System.out.println("Start Thread A");
 threadA.start();
 System.out.println("Start Thread B");
 threadB.start();
 System.out.println("Start Thread C");
 threadC.start();

 System.out.println("Exit from main()");
 }
}

Output

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 9

Synchronizing Threads:

Synchronization of threads ensures that if two or more threads need to access a shared
resource then that resource is used by only one thread at a time. You can synchronize your code
using the synchronized keyword. You can invoke only one synchronized method for an object at
any given time.

When a thread is within a synchronized method, all the other threads that try to call it on
the same instance have to wait. During the execution of a synchronized method, the object is
locked so that no other synchronized method can be invoked. The monitor is automatically
released when the method completes its execution. The monitor can also be released when the
synchronized method executes the wait () method. When a thread calls the wait () method, it
temporarily releases the locks that it holds.

The Synchronized Statement

 Synchronization among threads is achieved by using synchronized statements. The
synchronized statement is used where the synchronization methods are not used in a class and
you do not have access to the source code. You can synchronize the access to an object of this
class by placing the calls to the methods defined by it inside a synchronized block.

Syntax:

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 10

 synchronized(obj)
 {

// statements;
}

Implementing Runnable Interface

The Runnable interface declares the run () method that is required for implementing
threads in our programs. To do this, we must perform the steps listed below:

1) Declare the class as implementing the Runnable interface.

2) Implement the run() method

3) call the thread‘s start() method to run the thread.

The following program illustrates the concept of implementing the Runnable Interface in java.

class A implements Runnable
{
 public void run()
 {
 for(int i=1;i<=5;i++)
 {
 System.out.println("Thread A : i = " + i);
 }
 System.out.println("Exiting from the Thread A");
 }
}
class RunnableTest
{
 public static void main(String args[])
 {
 A ob=new A();

 Thread t=new Thread(ob);
 t.start();

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 11

 System.out.println("Exiting from the main()");
 }
}
Output

Inter-thread communication

Java supports inter-thread communication using wait(), notify(), notifyAll() methods.
These methods are implemented as final methods in Object. So, all classes have them. All three
methods can be called only from within a synchronized context.

 wait() tells the calling thread to give up the monitor and go to sleep until some other thread
enters the same monitor and calls notify()

 notify() wakes up the first thread that called wait() on the same object.

 notifyAll() wakes up all the threads that called wait() on the same object. The highest priority
thread will run first.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 1

Chapter-13

Managing Errors and Exceptions

An Exception is defined as ―”an abnormal error condition that arises during our
program execution”. When an Exception occurs in a program, the java interpreter creates an
exception object and throws it out as java exceptions, which are implemented as objects of
exception class. This class is defined in java.lang package. An Exception object contains data
members that will store the exact information about the runtime error (Exception) that has
occurred.

Types of Errors

Errors may broadly classified into two categories.

 Compile-time errors
 Run-time errors.

Compile-Time Errors

 All syntax errors will be detected and displayed by the java compiler and therefore these
errors are known as compile-time errors. Whenever the compiler displays an error, it will not
create the .class file.

The following program is the illustration of Compile-time errors

class Error1
{
 public static void main(String args[])
 {
 System.out.println("Hello Java") //Missing ;
 }
}
When we compile the above program the java compiler displays the following error.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 2

Runtime Errors

 Sometimes, a program may compile successfully creating the .class file but may not run
properly. Such programs may produce wrong results due to wrong logic or may terminate due to
errors such as stack overflow.

The following program is the illustration of Run-time errors .

class Error2
{
 public static void main(String[] args)
 {
 int a=10;
 int b=5;
 int c=5;
 int x=a/(b-c); //Division by zero
 System.out.println("x=" + x);
 int y=a/(b+c);
 System.out.println("y=" + y);
 }
}
Output

Exception Handling

 An exception is a condition that is caused by a run-time error in the program. When the
java interpreter encounters an error such as dividing an integer by zero, it creates an exception
object and throws it (informs us that an error occurs).

 If the exception object is not caught and handled properly, the interpreter will display an
error message as shown in the above output and will terminate the program.

 If we want the program to continue with the execution of the remaining code, then we
should try to catch the object thrown by the error condition and then display an appropriate
message for taking corrective actions. This task is known as Exception Handing.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 3

The following table shows the some common errors that are occurred in the java programs.

Exception Type Cause of Exception
ArithemeticException Caused by the math errors such

as division by zero.
ArrayIndexOutOfBoundsException Caused by bad array indexes.
FileNotFoundException Caused by an attempt to access

a non existing file.
NumberFormatException Caused when a conversion

between strings and numbers
fails.

NullPointerException Caused by referencing a null
object.

Exceptions in java can be categorized into two types.

 Checked Exceptions:

These exceptions are explicitly handled in the code itself with the help of try-catch
blocks. Checked exceptions are extended from the java.lang.Exception class.

 Unchecked Exceptions:

These exceptions are not essentially handled in the program code, instead the JVM
handles such exceptions. Unchecked exceptions are extended from the class
java.lang.RuntimeException.

Syntax of Exception Handling Code

 The basic concepts of exception handling are throwing an exception and catching it. This
illustrates in the following figure.

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 4

Java uses the keywords try and catch to handles the exceptions in the java programs.

try block:

 The statements that produces exception are identified in the program and the statements
are placed in try block.

 Syntax:

try
 {

 //Statements that causes Exception
}

catch block:

The catch block is used to process the exception raised. The catch block is placed
immediately after the try block.

 Syntax:
 catch(ExceptionType ex_ob)
{

 //Statements that handle Exception
}

The following program illustrates the use of using the try and catch blocks in the java programs.

class Error3
{
 public static void main(String args[])
 {
 int a=10;
 int b=5;
 int c=5;
 int x,y;
 try
 {
 x=a/(b-c); //Division by zero
 System.out.println("x=" + x);
 }
 catch(ArithmeticException e)
 {
 System.out.println("Division by Zero error occured");

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 5

 }
 y=a/(b+c);
 System.out.println("y=" + y);
 }
}
Output

Note that the program did not stop at the point of exception condition. It catches the error
condition, prints the error message.

The following is the program that catches the invalid command line arguments.

class Error4
{
 public static void main(String args[])
 {
 int number,invalid=0, valid=0;
 for(int i=0;i<args.length;i++)
 {
 try
 {
 number=Integer.parseInt(args[i]);
 }
 catch(NumberFormatException e)
 {
 invalid=invalid+1;
 System.out.println("Invalid number : " + args[i]);
 continue;
 }
 valid=valid+1;
 }
 System.out.println("Valid numbers = " + valid);
 System.out.println("Invalid numbers: " + invalid);
 }

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 6

}

Output

Nested Try:

A try block is placed inside the block of another try block is termed as Nested try block
statements. If any error statement is in outer try block, it goes to the corresponding outer catch
block. If any error statement is in inner try block first go to the inner catch block. If it is not the
corresponding exception next goes to the outer catch, which is also not corresponding exception
then terminated.

 The following is the example program

class NestedTry
{
 public static void main(String args[])
 {
 try
 {
 int a=2,b=4,c=2,x=7,z;
 int p[]={2};
 p[3]=33;
 try
 {
 z=x/((b*b)-(4*a*c));
 System.out.println("The value of x is= " + z);
 }
 catch (ArithmeticException e)
 {
 System.out.println("Division by zero in arithmetic expression");
 }
 }
 catch(ArrayIndexOutOfBoundsException e)

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 7

 {
 System.out.println("Array index is out-of-bounds");
 }
 }
}
Output

Multiple Catch Statements:

Multiple catch statements handle the situation where more than one exception could be
raised by a single piece of code. In such situations specify two or more catch blocks, each
specify different type of exception.

The following program illustrates this concept.

class ExceptionDemo
{
 public static void main(String args[])
 {
 int a[]={5,10};
 int b=5;
 try
 {
 int x=a[2]/(b-a[1]);
 }
 catch(ArithmeticException e)
 {
 System.out.println("Division by zero");
 }
 catch(ArrayIndexOutOfBoundsException e)
 {
 System.out.println("Array Index Error");
 }
 catch(ArrayStoreException e)
 {

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 8

 System.out.println("Wrong data type");
 }
 int y=a[1]/a[0];
 System.out.println("y=" + y);
 }
}
Output

Finally Statement

finally creates a block of code that will be executed after a try/catch block has completed.
The finally block will execute whether or not an exception is thrown. If an exception is thrown,
the finally block will execute even if no catch statement matches the exception.

Syntax:

finally
 {

 // statements that executed before try/catch
 }

Throwing our Own Exceptions (User defined Exceptions)

It is possible to create our own exception types to handle situations specific to our
application. Such exceptions are called User-defined Exceptions. User defined exceptions are
created by extending Exception class. The throw and throws keywords are used while
implementing user-defined exceptions.

The following is the example for the user defined exceptions in java.

class MyException extends Exception
{
 MyException(String msg)
 {
 super(msg);
 }
}

PROGRAMMING IN JAVA

 Dr. R. MALATHI, AP/CS, HHRC, PDKT Page 9

class TestMyException
{
 public static void main(String args[])
 {
 int x=5,y=1000;
 try
 {
 float z=(float)x/(float)y;
 if(z<0.01)
 {
 throw new MyException("Number is too small");
 }
 }
 catch(MyException e)
 {
 System.out.println("Caught my exception");
 System.out.println(e.getMessage());
 }
 finally
 {
 System.out.println("I am always here");
 }
 }
}
Output:

APPLETS

13.1 Preparing to Write Applets

13.2 Applet Life Cycle

13.3 Applet Tag

13.4 Adding Applet to a HTML File

13.5 Running the Applet

13.1 PREPARING TO WRITE APPLETS

Until now we have been creating simple Java application program with a single main()

method that created objects, set instance variables and ran methods. To write any applet, we will

need to know:

1. When to use applets.

2. How an applet works,

3. What sort of features an applet has, and

4. Where to start, when we first create our own applet.

The following are the steps that are involved in developing and testing and applet.

1. Buliding an applet code(.java file)

2. Creating an executable applet(.class file)

3. Designing a web page using HTML

4. Preparing <Applet Tag>

5. Incorporating <Applet> tag into the web page.

6. Creating HTML file.

7. Testing the applet code.

To building the applet code two classes of java library are essential namely Applet and

Graphics. The Applet class is contained in java.applet package provides life and beehaviour to

the applet through its methods such as int(), start() and paint(). Unlike with applications, where

java calls the main() method directly to initiate the execution of the program, when an applet is

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

loaded java automatically calls a series of Applet class methods for starting running and stopping

the applet code. The Applet class therefore maintains the life cycle of an applet.

public void paint(Graphics g)

Example:

import java.awt.*;

import java.applet.*;

……………….

………………

public class applet classname extends Applet

{

…………………

statements

 public void paint(Graphics g)

{

//Applet operations code

}

}

13.2 APPLET LIFE CYCLE

An applet is a window based event driven program and it waits until an event occurs. The

AWT notifies the applet about an event by calling an event handler that has been provided by

applet. Applet should not enter a "mode" of operation in which it maintains control for an

extended period. In these situations you must start an additional thread of execution.

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

Syntax

public class AppProgram extends Applet

{

 public void init()

{

 //initializtion

 }

 public void start()

{

 //start or resume execution

}

 public void stop()

{

 //suspend execution

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

}

 public void destroy()

{

 //perform shutdown activities

}

 public void paint(Graphics g)

{

 //redisplay contents of window

}

}

Initialization State

When the browser downloads an HTML page containing applets, it creates an instance

for each of the Applet classes, using the no arg constructor. Applet must have a no argument

constructor otherwise it cannot be loaded. Initialization can be done through init(). The init()

method is the first method to be called. It is used to initialize the applet each time it is reloaded.

Applets can be used for setting up an initial state, loading images or fonts, or setting parameters.

Syntax:

public void init()

{

 //code here

}

Running State

Immediately after calling init(), the browser calls the start() method. start() is also called

when user returns to an HTMLpage that contains the applet. So, it ht user leaves a web page and

come back, the applet resumes execution at start(). So, when the applet called the start() Method

it is called its running state. Staring can also occur if the applet is already in "stopped" (idle)

state.

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

Syntax:

public void start()

{

………..

(Action) ____________________

}

Idle or Stopped State

When we leave the page containing the currently running applet, then it stop running and

becomes idle. We can also do so by calling stop() Method explicitly.

Syntax:

public void stop()

{

………..

(Action) ____________________

}

Dead State

When an applet is completely removed from the Memory, it is called dead. This occurs

automatically by invoking the destroy() method when we quit the browser Like initialization,

dead state occurs only once in the applet's life cycle

Syntax:

public void destory()

{

………..

(Action) ____________________

}

Display State

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

Painting is how an applet displays something on screen-be it text, a line, a colored

background, or an image. The paint() method is used for displaying anything on the applet

paint() method takes an argument, an instance of class graphics. The code given can be as

follows:

Syntax:

public void paint(Graphics g)

{

}

13.3 APPLET TAG

The <Applet...< tag supplies the name of the applet to be loaded and tells the browser

how much space the applet requires. The ellipsis in the tag <Applet...> indicates that it contains

certain attributes that must specified. The <Applet> tag given below specifies the minimum

requirements to place the Hellojava applet on a web page.

<Applet

Code=Hellojava.class

width=400

Height=200>

</Applet>

The applet tag discussed above specified the three things:

1) Name of the applet

2) Width of the applet (in pixels)

3) Height of the applet (in pixels)

This HTML code tells the browser to load the compiled java applet Hellojava.class,

which is in the same directory as this HTML file. It also specifies the display area for the applet

output as 400 pixels width and 200 pixels height. We can make this display area appear in the

center of screen by using the CENTER tags as showsn below:

<CENTER>

<Applet>

</Applet>

</CENTER>

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

13.4 ADDING APPLET TO A HTML FILE

To execute an applet in a web browser, you need to write a short HTML text file that

contains the appropriate APPLET tag. Here is the HTML file that executes SimpleApplet:

<Applet code = Hellojava.class width = 400 Height = 200 >

</Applet>

 The width and height attributes specify the dimensions of the display area used by the

applet. After you create this file, you can execute the HTML file called RunApp.html (say) on

the command line.

c:\>appletviewer RunApp.html

13.5 RUNNING THE APPLET

To execute an applet with an applet viewer, you may also execute the HTML file in

which it is enclosed, eg.

 c:\>appletviewer RunApp.html

 Execute the applet the applet viewer, specifying the name of your applet's source file. The

applet viewer will encounter the applet tage within the comment and execute your applet.

Example :

The Following will be saved with named FirstJavaApplet.java:

import java.awt.*;

import java.applet.*;

public class FirstJavaApplet extends Applet

{

 public void paint(Graphics g)

{

 g.drawString("My First Java Applet Program",100,100);

}

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

}

After creating FirstJavaApplet.java file now you need create FirstJavaApplet.html file as

shown below:

<HTML>

<HEAD>

 <TITLE>My First Java Applet Program</TITLE>

</HEAD>

<BODY>

 <APPLET Code="FirstJavaApplet.class" Width=300 Height=200>

 </APPLET>

</BODY>

</HTML>

OUTPUT:

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

THE GRAPHICS CLASS

14.1 Lines and Rectangles

14.2 Circles and Ellipses

14.3 Drawing Arcs

14.4 Drawing Polygons

14.5 Line Graphs

14.1 LINES AND RECTANGLES

LINES:

In order to draw a line, you need to use the drawLine method of the Graphics class. This

method takes four parameters, the starting x and y coordinates and the

ending x and y coordinates.

Let's create a paint method that we will be adding to. We've already created the main method that

runs the code, so we can simply add our shapes as we go.

Example:

public void paint(Graphics g)

{ //custom color

 String hexColor = new String("0x45e5B");

g.setColor(Color.decode(hexColor));

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

 //draw a line (starting x,y; ending x,y)

g.drawLine(10, 10, 40, 10);

}

Output

RECTANGLES:

For our line, we used the Graphics class. We can make use of the

newer Graphics2D class, which allows some more options when it comes to 2-D shapes,

including thickness, anti-aliasing, etc. Add code to the beginning of the paint method to create a

Graphics 2D instance that casts the Graphics class to Graphics2D:

//draw rectangle

g2.drawRect(10, 20, 150, 40);

g2.setColor(Color.decode(hexColor));

Output

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

14.2 CIRCLES AND ELLIPSES

The Graphics class does not have any method for circles or ellipses. However, the

drawOvel() method can be used to draw a circle or an ellipse.

Like rectangle methods, the drawOval() method draws outline of an oval, and the

fillOval() method draws a solid oval.

Example:

import java.awt.*;

import java.applet.*;

 public class DrawEllipses extends Applet

{

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

 public void paint(Graphics g)

{

 g.drawOval(10, 10, 50, 50);

g.setColor(Color.GREEN);

g.fillOval(100, 10, 75, 50);

g.setColor(Color.cyan);

g.drawOval(190, 10, 90,30);

g.fillOval(70, 90, 140, 100);

 }

}

OUTPUT

14.3 DRAWING ARCS

A segment of an oval is an arc. The arc angle can be positive (sweeps anti-clockwise) or

negative (sweeps clockwise). As with other figures, the arcs can be outline or solid.

Supporting methods from java.awt.Graphics class

1. void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle): draws an

outline arc.

2. void fillArc(int x, int y, int width, int height, int startAngle, int arcAngle): draws a filled

(solid) arc.

where

 x and y: Indicates the x and y coordinates where the arc is to be drawn

 width and height: Indicates the width and height of the arc

 startAngle: Dictates the starting angle of the arc

 arcAngle: The angular extent of the arc (relative to the start angle)

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

Example:

import java.awt.*;

public class ArcsDrawing extends Frame

{

public ArcsDrawing()

{

 setTitle("Arcs Drawing");

 setSize(525, 300);

 setVisible(true);

 }

 public void paint(Graphics g)

{

 g.drawArc(60, 70, 200, 200, 0, 180);

g.fillArc(300, 70, 200, 200, 0, 270);

 }

 public static void main(String args[])

 {

 new ArcsDrawing();}}

Output:

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

14.4 DRAWING POLYGONS

Polygon is a closed figure with finite set of line segments joining one vertex to the other.

The polygon comprises of set of (x, y) coordinate pairs where each pair is the vertex of the

polygon. The side of the polygon is the line drawn between two successive coordinate pairs and

a line segment is drawn from the first pair to the last pair.

We can draw Polygon in java applet by three ways :

drawPolygon(int[] x, int[] y, int numberofpoints) : draws a polygon with the given set of x

and y points.

Example:

import java.awt.*;

import javax.swing.*;

public class poly extends JApplet

{ // called when applet is started

public void init()

{ // set the size of applet to 300, 300

setSize(200, 200);

show();

} // invoked when applet is started

public void start()

{

} // invoked when applet is closed

public void stop()

{

}

public void paint(Graphics g)

{ // x coordinates of vertices

int x[] = { 10, 30, 40, 50, 110, 140 }; // y coordinates of vertices

int y[] = { 140, 110, 50, 40, 30, 10 }; // number of vertices

int numberofpoints = 6; // set the color of line drawn to blue

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

g.setColor(Color.blue); // draw the polygon using drawPolygon function

g.drawPolygon(x, y, numberofpoints);

}

}

Output:

14.5 LINE GRAPHS

We can design applets to draw line graphs to illustrate graphically the relationship

between two variables

import org.jfree.chart.ChartPanel;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.JFreeChart;

import org.jfree.ui.ApplicationFrame;

import org.jfree.ui.RefineryUtilities;

import org.jfree.chart.plot.PlotOrientation;

import org.jfree.data.category.DefaultCategoryDataset;

public class LineChart_AWT extends ApplicationFrame {

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

 public LineChart_AWT(String applicationTitle , String chartTitle) {

 super(applicationTitle);

 JFreeChart lineChart = ChartFactory.createLineChart(

 chartTitle,

 "Years","Number of Schools",

 createDataset(),

 PlotOrientation.VERTICAL,

 true,true,false);

 ChartPanel chartPanel = new ChartPanel(lineChart);

 chartPanel.setPreferredSize(new java.awt.Dimension(560 , 367));

 setContentPane(chartPanel);

 }

 private DefaultCategoryDataset createDataset() {

 DefaultCategoryDataset dataset = new DefaultCategoryDataset();

 dataset.addValue(15 , "schools" , "1970");

 dataset.addValue(30 , "schools" , "1980");

 dataset.addValue(60 , "schools" , "1990");

 dataset.addValue(120 , "schools" , "2000");

 dataset.addValue(240 , "schools" , "2010");

 dataset.addValue(300 , "schools" , "2014");

 return dataset;

 }

 public static void main(String[] args) {

 LineChart_AWT chart = new LineChart_AWT(

 "School Vs Years" ,

 "Numer of Schools vs years");

 chart.pack();

 RefineryUtilities.centerFrameOnScreen(chart);

 chart.setVisible(true);

 }}

Output

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

PROGRAMMING IN JAVA

Dr.R. MALATHI, AP/CS, HHRC,PDKT

	Java Chapter-8.pdf
	static method

