
PROGRAMMING IN JAVA
SUBJECT CODE:18UCA5

 Java - The new programming language
developed by Sun Microsystems in 1991.

 Originally called Oak by James Gosling, one of
the inventors of the Java Language.

 Java -The name that survived a patent search
 Java Authors: James , Arthur Van , and others
 Java is really “C++ -- ++ “

 Originally created for consumer electronics
(TV, VCR, Freeze, Washing Machine, Mobile
Phone).

 Java - CPU Independent language
 Internet and Web was just emerging, so Sun

turned it into a language of Internet
Programming.

 It allows you to publish a webpage with Java
code in it.

Year Development
1990 Sun decided to developed special software that

could be used for electronic devices. A project called
Green Project created and head by James Gosling.

1991 Explored possibility of using C++, with some
updates announced a new language named “Oak”

1992 The team demonstrated the application of their new
language to control a list of home appliances using
a hand held device.

1993 The World Wide Web appeared on the Internet and
transformed the text-based interface to a graphical
rich environment. The team developed Web applets
(time programs) that could run on all types of
computers connected to the Internet.

Year Development
1994 The team developed a new Web browsed called “Hot

Java” to locate and run Applets. HotJava gained
instance success.

1995 Oak was renamed to Java, as it did not survive
“legal” registration. Many companies such as
Netscape and Microsoft announced their support for
Java

1996 Java established itself it self as both 1. “the
language for Internet programming” 2. a general
purpose OO language.

1997- A class libraries, Community effort and
standardization, Enterprise Java, Clustering, etc..

 Simple and Powerful
 Safe
 Object Oriented
 Robust
 Architecture Neutral and Portable
 Interpreted and High Performance
 Threaded
 Dynamic

 Familiar, Simple, Small
 Compiled and Interpreted
 Platform-Independent and Portable
 Object-Oriented
 Robust and Secure
 Distributed
 Multithreaded and Interactive
 High Performance
 Dynamic and Extensible

Text Editor Compiler Interpreter

Programmer

Source Code

.java file

Byte Code

.class file

Hardware and
Operating System

Notepad,
emacs,vi

javac java
appletviewer
netscape

JAVA COMPILER

JAVA BYTE CODE

JAVA INTERPRETER

Windows 95 Macintosh Solaris Windows NT

(translator)

(same for all platforms)

(one for each different system)

 Java Compiler - Java source code (file with
extension .java) to bytecode (file with
extension .class)

 Bytecode - an intermediate form, closer to
machine representation

 A interpreter (virtual machine) on any target
platform interprets the bytecode.

 Core Classes
language
Utilities
Input/Output
Low-Level Networking
Abstract Graphical User Interface

 Internet Classes
TCP/IP Networking
WWW and HTML
Distributed Programs

 A programming language is a set of commands,
instructions, and other syntax use to create a
software program. Languages that programmers use to
write code are called "high-level languages." This code
can be compiled into a "low-level language," which is
recognized directly by the computer hardware.

 High-level languages are designed to be easy to read
and understand. This allows programmers to
write source code in a natural fashion, using logical
words and symbols. For example, reserved words
like function, while, if, and else are used in most major
programming languages. Symbols like <, >, ==,
and != are common operators. Many high-level
languages are similar enough that programmers can
easily understand source code written in multiple
languages.

 Examples of high-level languages include C++, Java, Perl, and PHP.
Languages like C++ and Java are called "compiled languages" since
the source code must first be compiled in order to run. Languages
like Perl and PHP are called "interpreted languages" since the
source code can be run through an interpreter without being
compiled. Generally, compiled languages are used to create
software applications, while interpreted languages are used for
running scripts, such as those used to generate content
for dynamic websites.

 Low-level languages include assembly and machine languages. An
assembly language contains a list of basic instructions and is much
more difficult to read than a high-level language. In rare cases, a
programmer may decide to code a basic program in an assembly
language to ensure it operates as efficiently as possible. An
assembler can be used to translate the assembly code into machine
code. The machine code, or machine language, contains a series
of binary codes that are understood directly by a computer's CPU.
Needless to say, machine language is not designed to be human
readable.

 Programmers write their programs in a high
level programming language such as Java,
C++.

 A computer only understands its own
language called “machine language”.

 A compiler is needed to translate high level
program code into machine language code
that will be understood by the computer.

 After a program is compiled, the machine
code can be executed on the computer, say
Windows, for which it was compiled. If the
program is to be executed on another
platform, say Mac, the program will first have
to be compiled for that platform and can then
be executed.

 Java is a very popular high level programming
language

 Java has been used widely to create various
types of computer applications such as
database applications, desktop applications,
Web based applications, mobile applications,
and games among others.

Based on the data type of a variable, the
operating system allocates memory and
decides what can be stored in the reserved
memory.

Therefore, by assigning different data types
to variables, you can store integers,
decimals, or characters in these variables.

 Literals
 456—a literal numerical constant
 System.out.println(456); // Java
 “A Literal String Constant”
 System.out.println(“My First Java”); // Java

 Variables
 It is a named computer location in memory that holds

values that might vary
 That location have an address

 Specify the type of data and the length of the
data item in bytes

 int, short, long
 float, double
 boolean
 Char

 boolean, byte, char, double, float, int, long,
short

PRIMITIVE SIZE IN BITS RANGE
int 32 -2 to the 31st to 2 to the 31st

int 4 bytes 2147483648
long 64 -- 8 bytes -2 to the 63rd to 2 to the 63rd
float 32 +- 1.5 x 10^45
double 64 +- 5.0 x 10^324
decimal 128 28 significant figures
string 16 bits per

char
Not applicable

char 16 One character
boolean 8 True or false

Data type name Minimum value Maximum value

byte -128 127

short -32,768 32,767

int -2,147,483,648 2,147,483,647

long -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Data type name Minimum value Maximum value

float -3.40282347 x 1038 3.40282347 x 1038

double -1.79769313486231570 x 10308 1.79769313486231570 x 10308

 int A = 36;
◦ Sets a = to the constant 36 at execution time

 Int A =36;
◦ Sets A = to the constant 36 at compile time
◦ Initializes A to 36 at the time memory is set aside

for it

 Java is known as a strongly typed language.
◦ In a Strongly Typed Language before a value is assigned

to a variable, Java checks the types of the variable and
the value being assigned to it to determine if they are
compatible.

 For example:
int x;
double y = 2.5;
x = y;

This will cause an error
int x;
short y;
x = y;

This will NOT cause an error
…but, why?

 Types in Java have “ranks”.
◦ Ranks here means that if a type has a higher rank

than another, it can hold more numbers, and thus,
will not lose any precision.

◦ Ranks (Highest to Lowest):
1. double

2. float

3. long

4. int

5. short
6. byte

 Variables are containers for storing data values.
 In Java, there are different types of variables, for

example:
 String - stores text, such as "Hello". String values

are surrounded by double quotes
 int - stores integers (whole numbers), without

decimals, such as 123 or -123
 float - stores floating point numbers, with

decimals, such as 19.99 or -19.99
 char - stores single characters, such as 'a' or 'B'.

Char values are surrounded by single quotes
 boolean - stores values with two states: true or

false

An array is a data structure that contains a
group of elements. Typically these elements are all of
the same data type, such as an integer or string.
Arrays are commonly used in computer programs to
organize data so that a related set of values can be
easily sorted or searched.

30

 An array is a group of contiguous or related data
items that share a common name.

 Used when programs have to handle large amount
of data

 Each value is stored at a specific position
 Position is called a index or superscript. Base index

= 0
 The ability to use a single name to represent a

collection of items and refer to an item by
specifying the item number enables us to develop
concise and efficient programs.

31

 A[0]=69

69

61

70

89

23

10

9

0

1

2

3

4

5

6

index

values

32

 Like any other variables, arrays must declared and created
before they can be used. Creation of arrays involve three
steps:
◦ Declare the array
◦ Create storage area in primary memory.
◦ Put values into the array (i.e., Memory location)

 Declaration of Arrays:
◦ Form 1:

Type arrayname[]
◦ Form 2:

 Type [] arrayname;

◦ Examples:
int[] students;
int students[];

◦ Note: we don’t specify the size of arrays in the declaration.

33

◦ After declaring arrays, we need to allocate memory
for storage array items.

◦ In Java, this is carried out by using “new” operator,
as follows:
 Arrayname = new type[size];

◦ Examples:
 students = new int[7];

34

 Once arrays are created, they need to be initialised
with some values before access their content. A
general form of initialisation is:
◦ Arrayname [index/subscript] = value;

 Example:
 students[0] = 50;
 students[1] = 40;

 Java creates arrays starting with subscript 0 and
ends with value one less than the size specified.

 Java protects arrays from overruns and under runs.
Trying to access an array beyond its boundaries
will generate an error message.

35

 Arrays are fixed length
 Length is specified at create time
 In java, all arrays store the allocated size in a

variable named “length”.
 We can access the length of arrays as

arrayName.length:
e.g. int x = students.length; // x = 7

 Accessed using the index
e.g. int x = students [1]; // x = 40

36

// StudentArray.java: store integers in arrays and access
public class StudentArray{

public static void main(String[] args) {
int[] students;
students = new int[7];
System.out.println("Array Length = " +

students.length);

for (int i=0; i < students.length; i++)
students[i] = 2*i;

System.out.println("Values Stored in Array:");
for (int i=0; i < students.length; i++)

System.out.println(students[i]);
}

}

37

 Arrays can also be initialised like standard
variables at the time of their declaration.
◦ Type arrayname[] = {list of values};

 Example:
int[] students = {55, 69, 70, 30, 80};

 Creates and initializes the array of integers of length 5.
 In this case it is not necessary to use the new

operator.

38

// StudentArray.java: store integers in arrays and access
public class StudentArray{

public static void main(String[] args) {
int[] students = {55, 69, 70, 30, 80};

System.out.println("Array Length = " +
students.length);

System.out.println("Values Stored in Array:");
for (int i=0; i < students.length; i++)

System.out.println(students[i]);
}

}

39

 Two dimensional
arrays allows us to
store data that are
recorded in table.
For example:

 Table contains 12
items, we can think
of this as a matrix
consisting of 4
rows and 3
columns.

Item1 Item2 Item3

Salesgirl #1 10 15 30

Salesgirl #2 14 30 33

Salesgirl #3 200 32 1

Salesgirl #4 10 200 4

Sold

Person

41

 Declaration:
◦ int myArray [][];

 Creation:
◦ myArray = new int[4][3]; // OR
◦ int myArray [][] = new int[4][3];

 Initialisation:
◦ Single Value;

 myArray[0][0] = 10;
◦ Multiple values:

 int tableA[2][3] = {{10, 15, 30}, {14, 30, 33}};
 int tableA[][] = {{10, 15, 30}, {14, 30, 33}};

public class multiDimensional
{

public static void main(String args[])
{

// declaring and initializing 2D array
int arr[][] = { {2,7,9},{3,6,1},{7,4,2} };

// printing 2D array
for (int i=0; i< 3 ; i++)
{

for (int j=0; j < 3 ; j++)
System.out.print(arr[i][j] + " ");

System.out.println();
}

}
}

lvalue = rvalue;

• Take the value of the rvalue and store
it in the lvalue.

• The rvalue is any constant, variable or
expression.

• The lvalue is named variable.

w = 10;

x = w;

z = (x - 2)/(2 + 2);

 Addition +
 Subtraction -
 Multiplication *
 Division /
 Modulus %

public class Example {
public static void main(String[] args) {

int j, k, p, q, r, s, t;
j = 5;
k = 2;
p = j + k;
q = j - k;
r = j * k;
s = j / k;
t = j % k;
System.out.println("p = " + p);
System.out.println("q = " + q);
System.out.println("r = " + r);
System.out.println("s = " + s);
System.out.println("t = " + t);

}
}

> java Example
p = 7
q = 3
r = 10
s = 2
t = 1
>

Common Shorthand
a = a + b; a += b;
a = a - b; a -= b;
a = a * b; a *= b;
a = a / b; a /= b;
a = a % b; a %= b;

public class Example {
public static void main(String[] args) {

int j, p, q, r, s, t;
j = 5;
p = 1; q = 2; r = 3; s = 4; t = 5;
p += j;
q -= j;
r *= j;
s /= j;
t %= j;
System.out.println("p = " + p);
System.out.println("q = " + q);
System.out.println("r = " + r);
System.out.println("s = " + s);
System.out.println("t = " + t);

}
}

> java Example
p = 6
q = -3
r = 15
s = 0
t = 0
>

Common Shorthand
a = a + 1; a++; or ++a;
a = a - 1; a--; or --a;

> java example
p = 6
q = 6
j = 7
r = 6
s = 6
>

public class Example {
public static void main(String[] args) {

int j, p, q, r, s;
j = 5;
p = ++j; // j = j + 1; p = j;
System.out.println("p = " + p);
q = j++; // q = j; j = j + 1;
System.out.println("q = " + q);
System.out.println("j = " + j);
r = --j; // j = j -1; r = j;
System.out.println("r = " + r);
s = j--; // s = j; j = j - 1;
System.out.println("s = " + s);

}
}

Casting

The Logical
and

Relational Operators

Primitives

• Greater Than >

• Less Than <

• Greater Than or Equal >=

• Less Than or Equal <=

Primitives or Object References

• Equal (Equivalent) ==

• Not Equal !=

The Result is Always true or false

public class Example {
public static void main(String[] args) {

int p =2; int q = 2; int r = 3;
Integer i = new Integer(10);
Integer j = new Integer(10);

System.out.println("p < r " + (p < r));
System.out.println("p > r " + (p > r));
System.out.println("p == q " + (p == q));
System.out.println("p != q " + (p != q));

System.out.println("i == j " + (i == j));
System.out.println("i != j " + (i != j));

}
} > java Example

p < r true
p > r false
p == q true
p != q false
i == j false
i != j true
>

• Logical AND &&

• Logical OR ||

• Logical NOT !

public class Example {
public static void main(String[] args) {

boolean t = true;
boolean f = false;

System.out.println("f && f " + (f && f));
System.out.println("f && t " + (f && t));
System.out.println("t && f " + (t && f));
System.out.println("t && t " + (t && t));

}
}

> java Example
f && f false
f && t false
t && f false
t && t true
>

public class Example {
public static void main(String[] args) {

boolean t = true;
boolean f = false;

System.out.println("f || f " + (f || f));
System.out.println("f || t " + (f || t));
System.out.println("t || f " + (t || f));
System.out.println("t || t " + (t || t));

}
}

> java Example
f || f false
f || t true
t || f true
t || t true
>

public class Example {
public static void main(String[] args) {

boolean t = true;
boolean f = false;

System.out.println("!f " + !f);
System.out.println("!t " + !t);

}
}

> java Example
!f true
!t false
>

If true this expression is
evaluated and becomes the
value entire expression.

Any expression that evaluates
to a boolean value.

If false this expression is
evaluated and becomes the
value entire expression.

boolean_expression ? expression_1 : expression_2

public class Example {
public static void main(String[] args) {

boolean t = true;
boolean f = false;

System.out.println("t?true:false "+(t ? true : false));
System.out.println("t?1:2 "+(t ? 1 : 2));
System.out.println("f?true:false "+(f ? true : false));
System.out.println("f?1:2 "+(f ? 1 : 2));

}
}

> java Example
t?true:false true
t?1:2 1
f?true:false false
f?1:2 2
>

"Now is " + "the time."

"Now is the time."

If either expression_1If either expression_1 or expression_2 evaluates
to a string the other will be converted to a string
if needed. The result will be their concatenation.

expression_1 + expression_2

This method checks whether the String
contains anything or not. If the java String is
Empty, it returns true else false.

public class IsEmptyExample{

public static void main(String args[]){
String s1="";
String s2="hello";
System.out.println(s1.isEmpty()); // true
System.out.println(s2.isEmpty()); // false
}
}

The java string trim() method removes the leading
and trailing spaces. It checks the unicode value of
space character (‘u0020’) before and after the string.
If it exists, then removes the spaces and return the
omitted string.

public class StringTrimExample{
public static void main(String args[]){
String s1=" hello ";
System.out.println(s1+"how are you"); // without trim()
System.out.println(s1.trim()+"how are you"); // with trim()
}
}

The java string toLowerCase() method converts all the
characters of the String to lower case.

public class StringLowerExample
{

public static void main(String args[]){
String s1="HELLO HOW Are You?”;
String s1lower=s1.toLowerCase();
System.out.println(s1lower);}
}

The Java String toUpperCase() method converts all
the characters of the String to upper case.

public class StringUpperExample
{

public static void main(String args[])
{
String s1="hello how are you";
String s1upper=s1.toUpperCase();
System.out.println(s1upper);
}
}

+ - ++ -- ! ~ ()
* / %
+ -
<< >> >>>
> < >= <=
instanceof

== !=
& | ^
&& ||
?:
= (and += etc.)

Unary

Arithmetic

Shift

Comparison

Logical Bit

Boolean

Ternary

Assignment

Selection Statements
–Using if and if...else
–Nested if Statements
–Using switch Statements
–Conditional Operator

Repetition Statements
–Looping: while, do-while, and for

–Nested loops
–Using break and continue

 if Statements
 switch Statements

 Conditional Operators

if (booleanExpression) {
statement(s);

}
Example:
if ((i > 0) && (i < 10)) {
System.out.println("i is an " +

"integer between 0 and 10");
}

if (booleanExpression) {
statement(s)-for-the-true-case;

}
else {

statement(s)-for-the-false-case;
}

if (radius >= 0) {
area = radius*radius*PI;

System.out.println("The area for the “
+ “circle of radius " + radius +
" is " + area);

}
else {

System.out.println("Negative input");
}

switch (year) {
case 7: annualInterestRate = 7.25;

break;
case 15: annualInterestRate = 8.50;

break;
case 30: annualInterestRate = 9.0;

break;
default: System.out.println(
"Wrong number of years, enter 7, 15, or 30");

}

The switch-expression must yield a value of char, byte, short,
or int type and must always be enclosed in parentheses.

The value1, ..., and valueN must have the same data type as
the value of the switch-expression. The resulting statements in
the case statement are executed when the value in the case
statement matches the value of the switch-expression. (The
case statements are executed in sequential order.)

The keyword break is optional, but it should be used at the end
of each case in order to terminate the remainder of the switch
statement. If the break statement is not present, the next case
statement will be executed.

 while Loops
 do-while Loops
 for Loops
 break and continue

false

true

Statement(s)

Next
Statement

 Continuation
 condition?

while (continuation-condition) {

// loop-body;

}

int i = 0;
while (i < 100) {
System.out.println(
"Welcome to Java!");

i++;
}

false

true

System.out.println("Welcoem to Java!");
 i++;

Next
Statement

(i < 100)

 i = 0;

false

true

Statement(s)

Next
Statement

 Continue
 condition?

do {

// Loop body;

} while (continue-condition);

Initial-Action

false

true

Action-After-
Each-Iteration

Statement(s)
(loop-body)

Next
Statement

 Continuation
 condition?

for (initial-action;
loop-continuation-condition;
action-after-each-iteration) {
//loop body;

}

false

true

Statement(s)

Next
Statement

 Continuation
 condition?

Statement(s)

break

false

true

Statement(s)

Next
Statement

 Continue
 condition?

Statement(s)

continue

Condn?Exp1:Exp2

 Java is a true Object Oriented language and
therefore the underlying structure of all Java
programs is classes.

 Anything we wish to represent in Java must be
encapsulated in a class that defines the “state” and
“behaviour” of the basic program components
known as objects.

 Classes create objects and objects use methods to
communicate between them. They provide a
convenient method for packaging a group of
logically related data items and functions that work
on them.

 A class essentially serves as a template for an object

and behaves like a basic data type “int”.

 It is therefore important to understand how the fields

and methods are defined in a class and how they are

used to build a Java program that incorporates the basic

Object Oriented concepts such as encapsulation,

inheritance, and polymorphism.

 A class is a collection of fields (data) and
methods (procedure or function) that operate
on that data.

Circle

centre
radius

circumference()
area()

 The basic syntax for a class definition:

 Bare bone class – no fields, no methods

public class Circle {
// my circle class

}

class ClassName [extends
SuperClassName]
{

[fields declaration]
[methods declaration]

}

 Add fields

 The fields (data) are also called the instance
varaibles.

public class Circle {
public double x, y; // centre coordinate
public double r; // radius of the circle

}

 A class with only data fields has no life.
Objects created by such a class cannot
respond to any messages.

 Methods are declared inside the body of the
class but immediately after the declaration
of data fields.

 The general form of a method declaration
is:

type MethodName (parameter-list)
{

Method-body;
}

public class Circle {

public double x, y; // centre of the circle
public double r; // radius of circle

//Methods to return circumference and area
public double circumference() {

return 2*3.14*r;
}
public double area() {

return 3.14 * r * r;
}

}

Method Body

 Similar to C syntax for accessing data defined
in a structure.

Circle aCircle = new Circle();

aCircle.x = 2.0 // initialize center and radius
aCircle.y = 2.0
aCircle.r = 1.0

ObjectName.VariableName
ObjectName.MethodName(parameter-list)

 Using Object Methods:

Circle aCircle = new Circle();

double area;
aCircle.r = 1.0;
area = aCircle.area();

sent ‘message’ to aCircle

// Circle.java: Contains both Circle class and its user class
//Add Circle class code here
class MyMain
{

public static void main(String args[])
{

Circle aCircle; // creating reference
aCircle = new Circle(); // creating object
aCircle.x = 10; // assigning value to data field
aCircle.y = 20;
aCircle.r = 5;
double area = aCircle.area(); // invoking method
double circumf = aCircle.circumference();
System.out.println("Radius="+aCircle.r+" Area="+area);
System.out.println("Radius="+aCircle.r+" Circumference

="+circumf);
}

}

class Circle {

public double x, y; // centre of the circle
public double r; // radius of circle

//Methods to return circumference and area
public double circumference() {

return 2*3.14*r;
}
public double area() {

return 3.14 * r * r;
}

}
public class MyMain
{

public static void main(String args[])
{

Circle aCircle; // creating reference
aCircle = new Circle(); // creating object
aCircle.x = 10; // assigning value to data field
aCircle.y = 20;
aCircle.r = 5;
double area = aCircle.area(); // invoking method
double circumf = aCircle.circumference();
System.out.println("Radius="+aCircle.r+" Area="+area);
System.out.println("Radius="+aCircle.r+" Circumference ="+circumf);

}
}

 Java allows objects to initialize themselves
when they are created.

 A constructor initializes an object
immediately upon creation.

 It has the same name as the class in which it
resides and is syntactically similar to a
method.

 Once defined, the constructor is automatically
called immediately after the object is created.

 By implementing constructor, it would be
simpler and more concise to have all of the
setup done at the time the object is first
created.

 It can be tedious to initialize all of the
variables in a class each time an instance is
created.

 This automatic initialization is performed
through the use of a constructor.

 Constructors have no return type

 This is because the implicit return type of a
class’ constructor is the class type itself.

 It is the constructor’s job to initialize the
internal state of an object so that the code
creating an instance will have a fully
initialized, usable object immediately.

class Box
{
double width;
double height;
double depth;
Box()

{
System.out.println("Constructing Box");
width = 10;
height = 10;
depth = 10;

}
double volume()

{
return width * height * depth;

}
}

class BoxDemo6
{

public static void main(String args[])
{

Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;
vol = mybox1.volume();
System.out.println("Volume is " + vol);
vol = mybox2.volume();
System.out.println("Volume is " + vol);
}

}

int month;
int year

class Month

 A class contains data declarations (static
and instance variables) and method
declarations (behaviors)

Data declarations

Method declarations

 A program that provides some functionality can be
long and contains many statements

 A method groups a sequence of statements and
should provide a well-defined, easy-to-understand
functionality

◦ a method takes input, performs actions, and produces
output

 In Java, each method is defined within specific class

 A method declaration begins with a method header

method
name

return
type

parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal argument

class MyClass
{

static int min (int num1, int num2)
…

properties

 If you apply static keyword with any method, it is
known as static method.

 A static method belongs to the class rather than
the object of a class.

 A static method can be invoked without the need
for creating an instance of a class.

 A static method can access static data member
and can change the value of it.

The header is followed by the method body:

static int min(int num1, int num2)
{

int minValue = num1 < num2 ? num1 : num2;
return minValue;

}

class MyClass
{

…

…

}

 The return type of a method indicates the
type of value that the method sends back to
the calling location
◦ A method that does not return a value has a void

return type

 The return statement specifies the value that
will be returned
◦ Its expression must conform to the return type

 Each time a method is called, the values of
the actual arguments in the invocation are
assigned to the formal arguments

static int min (int num1, int num2)

{
int minValue = (num1 < num2 ? num1 : num2);
return minValue;

}

int num = min (2, 3);

 A method can call another method, who
can call another method, …

min(num1, num2, num3) println()

…println(…)
min(1, 2, 3);

main

public class ExampleMinNumber {

public static void main(String[] args) {
int a = 11;
int b = 6;
int c = minFunction(a, b);
System.out.println("Minimum Value = " + c);

}

/** returns the minimum of two numbers */
public static int minFunction(int n1, int n2) {

int min;
if (n1 > n2)

min = n2;
else

min = n1;

return min;
}

}

 Sometimes you want to have a multiple methods with
the same name be able to do different operations on
different parameters.
◦ Java allows this through a process called overloading.

 Overloading is having multiple methods in the same class with
the same name, but accept different types of parameters.

◦ For instance:
public double add(double num1, double num2) {

return num1 + num2;
}

public String add(String str1, String str2) {
return str1 + str2;

}
◦ Even though both of these methods are named add, they

perform different operations on different parameters.

 When we call a method, the compiler must
determine which of the methods to use
through a process called binding.
◦ Java binds methods by matching a method’s

signature to how it is called.
 A method’s signature consists of its name and the data

types of its parameters.
 The signatures of the two previous methods are:

 add(double, double)
 add(String, String)

 So the java compiler can tell which method to used
based on how it was called.

 A class may define multiple methods with the
same name---this is called method overloading
◦ usually perform the same task on different data types

 Example: The PrintStream class defines multiple
println methods, i.e., println is overloaded:

println (String s)
println (int i)
println (double d)

…
 The following lines use the System.out.print method

for different data types:
System.out.println ("The total is:");
double total = 0;
System.out.println (total);

 The compiler must be able to determine which
version of the method is being invoked

 This is by analyzing the parameters, which
form the signature of a method
◦ the signature includes the type and order of the

parameters
 if multiple methods match a method call, the compiler picks

the best match
 if none matches exactly but some implicit conversion can be

done to match a method, then the method is invoke with
implicit conversion.

◦ the return type of the method is not part of the
signature

class DisplayOverloading2
{

public void disp(char c)
{

System.out.println(c);
}
public void disp(int c)
{

System.out.println(c);
}

}

public class Sample2
{

public static void main(String args[])
{

DisplayOverloading2 obj = new DisplayOverloading2();
obj.disp('a');
obj.disp(5);

}
}

 Inner class
◦ defined inside another class
◦ but each instance of an inner class is

transparently associated with an instance of the
outer class

◦ method invocations can be transparently
redirected to outer instance

 Anonymous inner classes
◦ unnamed inner classes

 Nested class
◦ defined inside another class
◦ has access to private members of enclosing class
◦ But just a normal class

 Description
◦ Class defined in scope of another class

 Property
◦ Can directly access all variables & methods of

enclosing class (including private fields & methods)
 Example

public class OuterClass {
public class InnerClass {

...
}

}

 May be named or anonymous
 Useful for

◦ Logical grouping of functionality
◦ Data hiding
◦ Linkage to outer class

 Examples
◦ Iterator for Java Collections
◦ ActionListener for Java GUI widgets

 Inner class instance
◦ Has association to an instance of outer class
◦ Must be instantiated with an enclosing instance
◦ Is tied to outer class object at moment of creation

(can not be changed)

 Doesn’t name the class
 inner class defined at the place where you

create an instance of it (in the middle of a
method)
◦ Useful if the only thing you want to do with an inner

class is create instances of it in one location
 In addition to referring to fields/methods of

the outer class, can refer to final local
variables

 use
new Foo() {

public int one() { return 1; }
public int add(int x, int y) { return x+y; }
};

 to define an anonymous inner class that:
◦ extends class Foo
◦ defines methods one and add

 Code
public class MyList implements Iterable {

private Object [] a;
private int size;
public Iterator iterator() {
return new MyIterator();
}
public class MyIterator implements Iterator {

private int pos = 0;
public boolean hasNext() { return pos < size; }
public Object next() { return a[pos++]; }

}
}

 Code
public class MyList implements Iterable {

private Object [] a;
private int size;
public Iterator iterator() {
return new Iterator () {

private int pos = 0;
public boolean hasNext() { return pos < size; }
public Object next() { return a[pos++]; }

}
}

 Declared like a standard inner class, except
you say “static class” rather than “class”.

 For example:
class LinkedList {
static class Node {
Object head;
Node tail;
}

Node head;
}

 An instance of an inner class does not contain an
implicit reference to an instance of the outer class

 Still defined within outer class, has access to all the
private fields

 Use if inner object might be associated with
different outer objects, or survive longer than the
outer object
◦ Or just don’t want the overhead of the extra

pointer in each instance of the inner object

class Outer_Demo {
int num;

// inner class
private class Inner_Demo {

public void print() {
System.out.println("This is an inner class");

}
}

// Accessing he inner class from the method within
void display_Inner() {

Inner_Demo inner = new Inner_Demo();
inner.print();

}
}

public class My_class {

public static void main(String args[]) {
// Instantiating the outer class
Outer_Demo outer = new Outer_Demo();

// Accessing the display_Inner() method.
outer.display_Inner();

}
}

 An object of the String class represents a
string of characters.

 The String class belongs to the java.lang
package, which does not require an import
statement.

 Like other classes, String has constructors
and methods.

 Unlike other classes, String has two
operators, + and += (used for
concatenation).

 are anonymous objects of the String class
 are defined by enclosing text in double

quotes. “This is a literal String”
 don’t have to be constructed.
 can be assigned to String variables.
 can be passed to methods and constructors

as parameters.
 have methods you can call.

//assign a literal to a String variable

String name = “Robert”;

//calling a method on a literal String

char firstInitial = “Robert”.charAt(0);

//calling a method on a String variable

char firstInitial = name.charAt(0);

 Once created, a string cannot be changed:
none of its methods changes the string.

 Such objects are called immutable.
 Immutable objects are convenient because

several references can point to the same
object safely: there is no danger of
changing an object through one reference
without the others being aware of the
change.

Uses less memory.

String word1 =
"Java";

String word2 =
word1;

String word1 = “Java";
String word2 = new
String(word1);

word
1

OK
Less efficient:
wastes memory

“Java"

“Java"

“Java"
word

2

word
1

word
2

Less efficient — you need to create a new string and
throw away the old one even for small changes.

String word = “Java";
char ch = Character.toUpperCase(word.charAt

(0));
word = ch + word.substring (1);

word “java"

“Java"

 An empty String has no characters. It’s
length is 0.

 Not the same as an uninitialized String.

String word1 = "";
String word2 = new String();

private String errorMsg; errorMs
g is null

Empty
strings

 No-argument constructor creates an empty
String. Rarely used.

 A more common approach is to reassign the
variable to an empty literal String. (Often done to
reinitialize a variable used to store input.)

String empty = “”;//nothing between
quotes

String empty = new
String();

 Copy constructor creates a copy of an existing
String. Also rarely used.

 Not the same as an assignment.

String word = new
String(“Java”);
String word2 = new
String(word);

word

word2

“Java"
“Java"

Copy Constructor: Each variable points to a different copy of the
String.

String word = “Java”;
String word2 = word;

word “Java"
word2

Assignment: Both variables point to the same
String.

Most other constructors take an array as a
parameter to create a String.

char[] letters = {‘J’, ‘a’, ‘v’, ‘a’};
String word = new String(letters);//”Java”

int length();

char charAt(i);

 Returns the number of characters
in the string

 Returns the char at position i.

7
’n'

”Problem".length();
”Window".charAt (2);

Returns:

Character positions in strings are numbered
starting from 0 – just like arrays.

“lev"
“mutable"
"" (empty
string)

”television".substring
(2,5);
“immutable".substring (2);
“bob".substring (9);

Returns:

television

i k

television

i

 String subs = word.substring (i,
k);
◦ returns the substring of chars

in positions from i to k-1
 String subs = word.substring (i);

◦ returns the substring from the
i-th char to the end

Returns a new String by copying characters from an existing
String.

String word1 = “re”, word2 = “think”; word3 = “ing”;
int num = 2;
 String result = word1 + word2;

//concatenates word1 and word2 “rethink“
 String result = word1.concat (word2);

//the same as word1 + word2 “rethink“
 result += word3;

//concatenates word3 to result “rethinking”
 result += num; //converts num to String

//and concatenates it to result “rethinking2”

String name =“President George Washington";

date.indexOf (‘P'); 0
date.indexOf (‘e'); 2
date.indexOf (“George"); 10
date.indexOf (‘e', 3); 6

date.indexOf (“Bob"); -1
date.lastIndexOf (‘e'); 15

Returns:

(not found)

(starts
searching at
position 3)

0 2 6 10 15

boolean b = word1.equals(word2);
returns true if the string word1 is equal to
word2

boolean b = word1.equalsIgnoreCase(word2);
returns true if the string word1 matches
word2, case-blind

b = “Raiders”.equals(“Raiders”);//true
b = “Raiders”.equals(“raiders”);//false
b = “Raiders”.equalsIgnoreCase(“raiders”);//true

if(team.equalsIgnoreCase(“raiders”))
System.out.println(“Go You “ + team);

int diff = word1.compareTo(word2);
returns the “difference” word1 - word2

int diff = word1.compareToIgnoreCase(word2);
returns the “difference” word1 - word2,
case-blind

Usually programmers don’t care what the numerical
“difference” of word1 - word2 is, just whether the difference
is negative (word1 comes before word2), zero (word1 and
word2 are equal) or positive (word1 comes after word2).
Often used in conditional statements.
if(word1.compareTo(word2) > 0){

//word1 comes after word2…
}

//negative differences
diff = “apple”.compareTo(“berry”);//a before b
diff = “Zebra”.compareTo(“apple”);//Z before a
diff = “dig”.compareTo(“dug”);//i before u
diff = “dig”.compareTo(“digs”);//dig is shorter

//zero differences
diff = “apple”.compareTo(“apple”);//equal
diff = “dig”.compareToIgnoreCase(“DIG”);//equal

//positive differences
diff = “berry”.compareTo(“apple”);//b after a
diff = “apple”.compareTo(“Apple”);//a after A
diff = “BIT”.compareTo(“BIG”);//T after G
diff = “huge”.compareTo(“hug”);//huge is longer

String word2 = word1.trim ();
returns a new string formed from word1 by
removing white space at both ends
does not affect whites space in the middle

String word1 = “ Hi Bob “;
String word2 = word1.trim();
//word2 is “Hi Bob” – no spaces on either end
//word1 is still “ Hi Bob “ – with spaces

String word2 = word1.replace(oldCh, newCh);
returns a new string formed from word1 by
replacing all occurrences of oldCh with
newCh

String word1 = “rare“;
String word2 = “rare“.replace(‘r’, ‘d’);
//word2 is “dade”, but word1 is still “rare“

String word2 = word1.toUpperCase();
String word3 = word1.toLowerCase();

returns a new string formed from word1 by
converting its characters to upper (lower)
case

String word1 = “HeLLo“;
String word2 =
word1.toUpperCase();//”HELLO”
String word3 =
word1.toLowerCase();//”hello”
//word1 is still “HeLLo“

 Example: to “convert” word1 to upper case, replace
the reference with a new reference.

 A common bug:

word1 = word1.toUpperCase();

word1.toUpperCase(); word1
remains

unchanged

Three ways to convert a number into a string:
1. String s = "" + num;

2. String s = Integer.toString (i);
String s = Double.toString (d);

3. String s = String.valueOf (num);
s = String.valueOf(123);//”123”

s = “” + 123;//”123”

s = Integer.toString(123);//”123”
s = Double.toString(3.14); //”3.14”

Command-line arguments in Java are used to
pass arguments to the main program. If you look at
the Java main method syntax, it accepts String array
as an argument. When we pass command-line
arguments, they are treated as strings and passed to
the main function in the string array argument.

 Inheritance allows a software developer to derive
a new class from an existing one

 The existing class is called the parent class, or
superclass, or base class

 The derived class is called the child class or
subclass.

 As the name implies, the child inherits
characteristics of the parent

 That is, the child class inherits the methods and
data defined for the parent class

 To tailor a derived class, the programmer can
add new variables or methods, or can modify
the inherited ones

 Software reuse is at the heart of inheritance

 By using existing software components to
create new ones, we capitalize on all the
effort that went into the design,
implementation, and testing of the existing
software

 Inheritance relationships often are shown
graphically in a UML class diagram, with an
arrow with an open arrowhead pointing to the
parent class

Vehicle

Car

Inheritance should create an is-a relationship, meaning the child is
a more specific version of the parent

 In Java, we use the reserved word extends to
establish an inheritance relationship

class Car extends Vehicle

{

// class contents

}

 A child class of one parent can be the parent
of another child, forming a class hierarchy

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

 Two children of the same parent are called
siblings

 Common features should be put as high in the
hierarchy as is reasonable

 An inherited member is passed continually down
the line

 Therefore, a child class inherits from all its
ancestor classes

 There is no single class hierarchy that is
appropriate for all situations

class Teacher {
String designation = "Teacher";
String collegeName = "Beginnersbook";
void does(){

System.out.println("Teaching");
}

}

public class PhysicsTeacher extends Teacher{
String mainSubject = "Physics";
public static void main(String args[]){

PhysicsTeacher obj = new PhysicsTeacher();
System.out.println(obj.collegeName);
System.out.println(obj.designation);
System.out.println(obj.mainSubject);
obj.does();

}
}

 Visibility modifiers determine which class
members are inherited and which are not

 Variables and methods declared with public
visibility are inherited; those with private
visibility are not

 But public variables violate the principle of
encapsulation

 There is a third visibility modifier that helps
in inheritance situations: protected

 The protected modifier allows a member of
a base class to be inherited into a child

 Protected visibility provides more
encapsulation than public visibility does

 However, protected visibility is not as tightly
encapsulated as private visibility

 Constructors are not inherited, even though
they have public visibility

 Yet we often want to use the parent's
constructor to set up the "parent's part" of
the object

 The super reference can be used to refer to
the parent class, and often is used to invoke
the parent's constructor

 A child’s constructor is responsible for calling
the parent’s constructor

 The first line of a child’s constructor should
use the super reference to call the parent’s
constructor

 The super reference can also be used to
reference other variables and methods
defined in the parent’s class

 If subclass (child class) has the same method
as declared in the parent class, it is known
as method overriding in Java.

 In other words, If a subclass provides the
specific implementation of the method that
has been declared by one of its parent class,
it is known as method overriding.

 Method overriding is used to provide the
specific implementation of a method which is
already provided by its superclass.

 Method overriding is used for runtime
polymorphism

 The method must have the same name as in
the parent class

 The method must have the same parameter
as in the parent class.

 There must be an IS-A relationship
(inheritance).

 //Creating a parent class.
 class Vehicle{
 //defining a method
 void run(){System.out.println("Vehicle is running");}
 }
 //Creating a child class
 class Bike2 extends Vehicle{
 //defining the same method as in the parent class
 void run(){System.out.println("Bike is running safely")

;}


 public static void main(String args[]){
 Bike2 obj = new Bike2();//creating object
 obj.run();//calling method
 }
 }

class Bank
{
int getRateOfInterest()
{
return 0;
}
}

class SBI extends Bank
{
int getRateOfInterest(){
return 8;
}
}
class ICICI extends Bank
{
int getRateOfInterest(){
return 7;
}
}
class AXIS extends Bank
{
int getRateOfInterest(){
return 9;
}
}
class Test2{
public static void main(String args[]){
SBI s=new SBI();
ICICI i=new ICICI();
AXIS a=new AXIS();
System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());
System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());
System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest());
}
}

No. Method Overloading Method Overriding

1) Method overloading is used to
increase the readability of the
program.

Method overriding is used to provide the
specific implementation of the method
that is already provided by its super
class.

2) Method overloading is
performed within class.

Method overriding occurs in two
classes that have IS-A (inheritance)
relationship.

3) In case of method
overloading, parameter must be
different.

In case of method overriding, parameter
must be same.

4) Method overloading is the
example of compile time
polymorphism.

Method overriding is the example of run
time polymorphism.

5) In java, method overloading
can't be performed by changing
return type of the method
only. Return type can be same
or different in method
overloading. But you must have
to change the parameter.

Return type must be same or
covariant in method overriding.

 Java supports single inheritance, meaning that a
derived class can have only one parent class

 Multiple inheritance allows a class to be derived
from two or more classes, inheriting the
members of all parents

 Collisions, such as the same variable name in two
parents, have to be resolved

 In most cases, the use of interfaces gives us
aspects of multiple inheritance without the
overhead

Multiple Inheritance is very rarely used in software projects. Using
Multiple inheritance often leads to problems in the hierarchy. This
results in unwanted complexity when further extending the class.

 Multilevel inheritance refers to a mechanism
in OO technology where one can inherit from
a derived class, thereby making this derived
class the base class for the new class.

 In the flow diagram C is subclass or child
class of B and B is a child class of A.

class X
{

public void methodX()
{
System.out.println("Class X method");

}
}
class Y extends X
{
public void methodY()
{
System.out.println(“Class Y method");
}
}
class Z extends Y
{

public void methodZ()
{
System.out.println(“Class Z method");

}
public static void main(String args[])
{
Z obj = new Z();
obj.methodX(); //calling grand parent class method
obj.methodY(); //calling parent class method
obj.methodZ(); //calling local method

}
}

 A class called Object is defined in the
java.lang package of the Java standard
class library

 All classes are derived from the Object class

 If a class is not explicitly defined to be the
child of an existing class, it is assumed to be
the child of the Object class

 Therefore, the Object class is the ultimate
root of all class hierarchies

 The Object class contains a few useful methods,
which are inherited by all classes

 For example, the toString method is defined in the
Object class

 Every time we have defined toString, we have
actually been overriding an existing definition

 The toString method in the Object class is defined
to return a string that contains the name of the
object’s class together along with some other
information

 All objects are guaranteed to have a toString
method via inheritance

 Thus the println method can call toString for any
object that is passed to it

 The equals method of the Object class
returns true if two references are aliases

 We can override equals in any class to define
equality in some more appropriate way

 The String class (as we've seen) defines the
equals method to return true if two String
objects contain the same characters

 Therefore the String class has overridden
the equals method inherited from Object in
favor of its own version

 An abstract class is a placeholder in a class
hierarchy that represents a generic concept

 An abstract class cannot be instantiated

 We use the modifier abstract on the class
header to declare a class as abstract:

public abstract class Whatever
{

// contents
}

 An abstract class often contains abstract
methods with no definitions (like an interface
does)

 Unlike an interface, the abstract modifier
must be applied to each abstract method

 An abstract class typically contains non-
abstract methods (with bodies), further
distinguishing abstract classes from
interfaces

 A class declared as abstract does not need to
contain abstract methods

 The child of an abstract class must override
the abstract methods of the parent, or it too
will be considered abstract

 An abstract method cannot be defined as
final (because it must be overridden) or
static (because it has no definition yet)

 The use of abstract classes is a design
decision – it helps us establish common
elements in a class that is too general to
instantiate

//abstract parent class
abstract class Animal{

//abstract method
public abstract void sound();

}
//Dog class extends Animal class
public class Dog extends Animal{

public void sound(){
System.out.println("Woof");

}
public static void main(String args[]){

Animal obj = new Dog();
obj.sound();

}
}

 The main feature of OOP is its ability to support
the reuse of code:
◦ Extending the classes (via inheritance)
◦ Extending interfaces

 The features in basic form limited to reusing the
classes within a program.

 What if we need to use classes from other
programs without physically copying them into
the program under development ?

 In Java, this is achieved by using what is known as
“packages”, a concept similar to “class libraries” in
other languages.

 Packages are Java’s way of grouping a number of
related classes and/or interfaces together into a
single unit. That means, packages act as
“containers” for classes.

 The benefits of organising classes into packages
are:
◦ The classes contained in the packages of other

programs/applications can be reused.
◦ In packages classes can be unique compared with classes in

other packages. That two classes in two different packages
can have the same name. If there is a naming clash, then
classes can be accessed with their fully qualified name.

◦ Classes in packages can be hidden if we don’t want other
packages to access them.

◦ Packages also provide a way for separating “design” from
coding.

 Java provides a large number of classes grouped into
different packages based on their functionality.

 The six foundation Java packages are:
◦ java.lang

 Contains classes for primitive types, strings, math functions, threads,
and exception

◦ java.util
 Contains classes such as vectors, hash tables, date etc.

◦ java.io
 Stream classes for I/O

◦ java.awt
 Classes for implementing GUI – windows, buttons, menus etc.

◦ java.net
 Classes for networking

◦ java.applet
 Classes for creating and implementing applets

 The packages are organised in a hierarchical
structure. For example, a package named “java”
contains the package “awt”, which in turn contains
various classes required for implementing GUI
(graphical user interface).

Graphics

Font

java

Image
…

awt

lang “java” Package containing
“lang”, “awt”,.. packages;
Can also contain classes.

awt Package containing
classes
Classes containing
methods

 There are two ways of accessing the classes stored in
packages:
◦ Using fully qualified class name

 java.lang.Math.sqrt(x);
◦ Import package and use class name directly.

 import java.lang.Math
 Math.sqrt(x);

 Selected or all classes in packages can be imported:

 Implicit in all programs: import java.lang.*;
 package statement(s) must appear first

import package.class;
import package.*;

 Java supports a keyword called “package” for creating user-
defined packages. The package statement must be the first
statement in a Java source file (except comments and white
spaces) followed by one or more classes.

 Package name is “myPackage” and classes are considred as
part of this package; The code is saved in a file called
“ClassA.java” and located in a directory called “myPackage”.

package myPackage;
public class ClassA {

// class body
}
class ClassB {
// class body

}

 Classes in one ore more source files can be part of
the same packages.

 As packages in Java are organised
hierarchically, sub-packages can be created
as follows:
◦ package myPackage.Math
◦ package myPackage.secondPakage.thirdPackage

 Store “thirdPackage” in a subdirectory named
“myPackage\secondPackage”. Store
“secondPackage” and “Math” class in a subdirectory
“myPackage”.

 As indicated earlier, classes in packages can
be accessed using a fully qualified name or
using a short-cut as long as we import a
corresponding package.

 The general form of importing package is:
◦ import package1[.package2][…].classname
◦ Example:

 import myPackage.ClassA;
 import myPackage.secondPackage

◦ All classes/packages from higher-level package
can be imported as follows:
 import myPackage.*;

import letmecalculate.Calculator;
public class Demo{

public static void main(String args[]){
Calculator obj = new Calculator();
System.out.println(obj.add(100, 200));

}
}

package letmecalculate;

public class Calculator {
public int add(int a, int b){

return a+b;
}
public static void main(String args[]){

Calculator obj = new Calculator();
System.out.println(obj.add(10, 20));

}
}

 All classes (or interfaces) accessible to all
others in the same package.

 Class declared public in one package is
accessible within another. Non-public class
is not

 Members of a class are accessible from a
difference class, as long as they are not
private

 protected members of a class in a package
are accessible to subclasses in a different
class

 Public keyword applied to a class, makes it
available/visible everywhere. Applied to a
method or variable, completely visible.

 Private fields or methods for a class only
visible within that class. Private members
are not visible within subclasses, and are
not inherited.

 Protected members of a class are visible
within the class, subclasses and also within
all classes that are in the same package as
that class.

Accessible to: public protected Package

(default)

private

Same Class Yes Yes Yes Yes

Class in package Yes Yes Yes No

Subclass in
different package

Yes Yes No No

Non-subclass

different package
Yes No No No

 A Java interface is a collection of constants
and abstract methods
◦ abstract method: a method header without a

method body; we declare an abstract method
using the modifier abstract

◦ since all methods in an interface are abstract, the
abstract modifier is usually left off

 Methods in an interface have public visibility
by default

public interface Doable
{

public static final String NAME;

public void doThis();
public int doThat();
public void doThis2 (float value, char ch);
public boolean doTheOther (int num);

}

interface is a reserved word

No method in an
interface has a definition (body)

A semicolon immediately
follows each method header

 A class formally implements an interface by
◦ stating so in the class header in the implements

clause
◦ a class can implement multiple interfaces: the

interfaces are listed in the implements clause,
separated by commas

 If a class asserts that it implements an
interface, it must define all methods in the
interface or the compiler will produce errors

public class Something implements Doable
{

public void doThis ()
{

// whatever
}

public void doThat ()
{

// whatever
}

// etc.
}

implements is a
reserved word

Each method listed
in Doable is

given a definition

public class ManyThings implements Doable, AnotherDoable

<<interface>>
Complexity

+ getComplexity () : int
+ setComplexity (int) : void

Question

+ getQuestion () : String
+ getAnswer () : String
+ answerCorrect (String) : boolean
+ toString() : String

MiniQuiz

+ main(args : String[]) : void

1

2

 The Java Standard Class library defines many
interfaces:
◦ the Iterator interface contains methods that allow the

user to move through a collection of objects easily
 hasNext(), next(), remove()

◦ the Comparable interface contains an abstract method
called compareTo, which is used to compare two objects

if (obj1.compareTo(obj2) < 0)
System.out.println(“obj1 is less than obj2”);

 Inheritance can be applied to interfaces as well as
classes

 One interface can be used as the parent of another
 The child interface inherits all abstract methods of

the parent
 A class implementing the child interface must

define all methods from both the parent and child
interfaces

 Note that class hierarchies and interface
hierarchies are distinct (they do not overlap)

 Errors can be dealt with at place error
occurs
◦ Easy to see if proper error checking implemented
◦ Harder to read application itself and see how code

works
 Exception handling

◦ Makes clear, robust, fault-tolerant programs
◦ Java removes error handling code from "main line" of

program
 Common failures

◦ Memory exhaustion
◦ Out of bounds array subscript
◦ Division by zero
◦ Invalid method parameters

 Exception handling
◦ Catch errors before they occur
◦ Deals with synchronous errors (i.e., divide by zero)
◦ Does not deal with asynchronous errors

 Disk I/O completions, mouse clicks - use interrupt
processing

◦ Used when system can recover from error
 Exception handler - recovery procedure
 Error dealt with in different place than where it

occurred
◦ Useful when program cannot recover but must

shut down cleanly

 Exception handling
◦ Should not be used for program control

 Not optimized, can harm program performance
◦ Improves fault-tolerance

 Easier to write error-processing code
 Specify what type of exceptions are to be caught

◦ Another way to return control from a function or
block of code

 Error handling used for
◦ Processing exceptional situations
◦ Processing exceptions for components that cannot

handle them directly
◦ Processing exceptions for widely used components

(libraries, classes, methods) that should not process
their own exceptions

◦ Large projects that require uniform error processing

 Exception handling
◦ Method detects error which it cannot deal with

 Throws an exception
◦ Exception handler

 Code to catch exception and handle it
◦ Exception only caught if handler exists

 If exception not caught, block terminates

 Format
◦ Enclose code that may have an error in try

block
◦ Follow with one or more catch blocks

 Each catch block has an exception handler
◦ If exception occurs and matches parameter in
catch block
 Code in catch block executed

◦ If no exception thrown
 Exception handling code skipped
 Control resumes after catch blocks

try{
code that may throw

exceptions
}
catch (ExceptionType ref) {

exception handling code
}

 Termination model of exception handling
◦ throw point

 Place where exception occurred
 Control cannot return to throw point

◦ Block which threw exception expires
◦ Possible to give information to exception handler

 Example program
◦ User enters two integers to be divided
◦ We want to catch division by zero errors
◦ Exceptions

 Objects derived from class Exception
◦ Look in Exception classes in java.lang

 Nothing appropriate for divide by zero
 Closest is ArithmeticException
 Extend and create our own exception class

 To handle an exception in a program, the line
that throws the exception is executed within a try
block

 A try block is followed by one or more catch
clauses

 Each catch clause has an associated exception
type and is called an exception handler

 When an exception occurs, processing continues
at the first catch clause that matches the
exception type

 A try statement can have an optional clause following
the catch clauses, designated by the reserved word
finally

 The statements in the finally clause always are
executed

 If no exception is generated, the statements in the
finally clause are executed after the statements in the
try block complete

 If an exception is generated, the statements in the
finally clause are executed after the statements in the
appropriate catch clause complete

public class myclass {
public static void main(String[] args) {

try {
int[] myNumbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
System.out.println(myNumbers[10]);

} catch (Exception e) {
System.out.println(“Array Index Out of Bound");

}
}

}

 A try statement can be inside the block of another try
 Each time a try statement is entered, the context of that

exception is pushed on the stack
 If an inner try statement does not have a catch, then the

next try statement’s catch handlers are inspected for a
match

 If a method call within a try block has try block within
it, then then it is still nested try

class nestedtry {
public static void main(String args[])
{

try {
int a[] = { 1, 2, 3, 4, 5 };
System.out.println(a[5]);
try {

int x = a[2] / 0;
}

catch (ArithmeticException e2) {
System.out.println("division by zero is not possible");

}
}
catch (ArrayIndexOutOfBoundsException e1) {

System.out.println("ArrayIndexOutOfBoundsException");
System.out.println("Element at such index does not exists");

}
}

}

 To receive information, a program opens a
stream to a “source” and reads the
information:

 To send information, a program opens a
stream to a destination (“sink”) and writes
the information:

 Java provides many stream classes that let
you work with data either
◦ in the forms that you usually use (characters &

numbers)
◦ in low level byte form (8 bits at a time)

 Low level byte-oriented abstract classes
◦ InputStream and Outputstream.

 Higher level character-based abstract
classes
◦ Reader and Writer

 No matter where the information is coming
from or going to and no matter what type of
data is being read or written, the algorithms
for reading and writing data are pretty much
always the same

Reading:
open a stream
while more information

read information
close the stream

Writing:
open a stream
while more information

write information
close the stream

 The java.io package contains a collection of
stream classes that support reading/writing
from/to streams

 Streams are divided into two class hierarchies
based on the type of data on which they
operate.

Characters Bytes

Files FileReader FileInputStream

FileWriter FileOutputStream

Buffering BufferedReader BufferedInputStream

BufferedWriter BufferedOutputStream

Printing PrintWriter PrintStream

InputStream

ByteArray
InputStream

File
InputStream

Filter
InputStream

Piped
InputStream

Sequence
InputStream

StringBuffer
InputStream

Object
InputStream

Buffered
InputStream

Checked
InputStream

Inflator
InputStream

PushBack
InputStream

Data
InputStream

ProgressMonitor
InputStream

Digest
InputStream

GZip
InputStream

Zip
InputStream

ByteArrayInputStream

ByteArrayOutputStream
Read or write a byte array.

FileInputStream

FileOutputStream
Read or write data as bytes in a file.

BufferedInputStream

BufferedOutputStream
Buffers the bytes in the underlying input or output
stream.

DataInputStream

DataOutputStream
A filter that allows the binary representation of Java
primitive values (e.g., ‘int’ is 4 bytes) to be read or
written by the specified underlying input or output
stream.

PushbackInputStream “Peek-a-boo” reader allows bytes to be “unread”
from an underlying input stream.

ObjectInputStream

ObjectOutputStream
Read or write binary representations of entire Java
objects, using the underlying input or output
stream.

PipedInputStream

PipedOutputStream
Used in pairs by Java threads to communicate with
each other.

SequenceInputStream Concatenates several input streams.

CharArrayReader

CharArrayWriter
Read or write a character array.

FileReader

FileWriter
Read or write characters in a file.

BufferedReader

BufferedWriter
Buffers the bytes in the underlying Reader or Writer
stream.

StringReader

StringWriter
Read characters from a String, or write characters to
a StringBuffer.

PushbackReader “Peek-a-boo” reader allows characters to be
“unread” from an underlying Reader. (Useful for
writing parsers.)

InputStreamReader

OutputStreamReader
Read or write characters in an underlying input or
output stream. (e.g., like making a Reader out of an
InputStream)

PipedReader

PipedWriter
Used in pairs by Java threads for text-based
communication with each other.

LineNumberReader A BufferedReader that also keeps track of the
number of lines read from the underlying Reader.

 A piece of code that run in concurrent with
other threads.

 Each thread is a ordered sequence of
instructions.

 Threads are being extensively used express
concurrency on both single and
multiprocessors machines.

 Programming a task having multiple
threads of control – Multithreading or
Multithreaded Programming.

 Java has built in thread support for
Multithreading

 Synchronization
 Thread Scheduling
 Inter-Thread Communication:

◦ currentThread start setPriority
◦ yield run getPriority
◦ sleep stop suspend
◦ resume

 Java Garbage Collector is a low-priority
thread.

 Threads are lightweight processes as the
overhead of switching between threads is less

 They can be easily spawned
 The Java Virtual Machine spawns a thread

when your program calls the Main Thread

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

class ABC
{
….

public void main(..)
{
…
..
}

}

begin

body

end

• Consider a simple web server
• The web server listens for request and serves it
• If the web server was not multithreaded, the

requests processing would be in a queue, thus
increasing the response time and also might
hang the server if there was a bad request.

• By implementing in a multithreaded environment,
the web server can serve multiple request
simultaneously thus improving response time

 To enhance parallel processing
 To increase response to the user
 To utilize the idle time of the CPU
 Prioritize your work depending on priority

Internet
Server

PC client

Local Area Network

No
Image

Printing ThreadPrinting Thread

Editing ThreadEditing Thread

 In java threads can be created by extending
the Thread class or implementing the
Runnable Interface

 It is more preferred to implement the
Runnable Interface so that we can extend
properties from other classes

 Implement the run() method which is the
starting point for thread execution

• Example
class mythread implements Runnable{

public void run(){
System.out.println(“Thread Started”);

}
}

class mainclass {
public static void main(String args[]){

Thread t = new Thread(new mythread()); // This is the way to instantiate a
thread implementing runnable interface

t.start(); // starts the thread by running the run method
}

}

• Calling t.run() does not start a thread, it is just a
simple method call.

• Creating an object does not create a thread, calling
start() method creates the thread.

 Synchronization prevent data corruption
 Synchronization allows only one thread to

perform an operation on a object at a time.
 If multiple threads require an access to an

object, synchronization helps in maintaining
consistency.

 If one thread tries to read the data and
other thread tries to update the same data,
it leads to inconsistent state.

 This can be prevented by synchronising
access to the data.

 Use “Synchronized” method:
◦ public synchronized void update()
◦ {

 …
◦ }

 In Java, each thread is assigned priority,
which affects the order in which it is
scheduled for running. The threads so far
had same default priority (NORM_PRIORITY)
and they are served using FCFS policy.
◦ Java allows users to change priority:

 ThreadName.setPriority(intNumber)
 MIN_PRIORITY = 1
 NORM_PRIORITY=5
 MAX_PRIORITY=10

 Applications Access to Shared Resources
need to be coordinated.
◦ Printer (two person jobs cannot be printed at the

same time)
◦ Simultaneous operations on your bank account
◦ Can the following operations be done at the same

time on the same account?
 Deposit()
 Withdraw()
 Enquire()

class A extends Thread
{

public void run()
{

for(int i=1;i<=5;i++)
{

System.out.println("\t From Thread A: i= "+i);
}
System.out.println("Exit from A");

}
}

class B extends Thread
{

public void run()
{

for(int j=1;j<=5;j++)
{

System.out.println("\t From Thread B: j= "+j);
}
System.out.println("Exit from B");

}
}

class C extends Thread
{

public void run()
{

for(int k=1;k<=5;k++)
{

System.out.println("\t From Thread C: k= "+k);
}

System.out.println("Exit from C");
}

}

class ThreadTest
{

public static void main(String args[])
{

new A().start();
new B().start();
new C().start();

}
}

From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5

Exit from A
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B

From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B
Exit from A

MEM

CPU

HDD

keyboard

monitor
terminal
console

standard
input stream

standard
output
stream

Streams

How does information
travel across?

MEM

CPU

HDD

keyboard

monitor
terminal
console

standard
input stream

standard
output
stream

file
input

stream
LOAD
READ

file
output
stream
SAVE

WRITE

Streams files

How does information
travel across?

 Text files – files containing simple text
◦ Created with editors such as notepad, html, etc.

 Simplest way to learn is to extend use of
Scanner
◦ Associate with files instead of System.in

 All input classes, except Scanner, are in
java.io
◦ import java.io.*;

 2 ways (we’ve learned one, seen the other)
◦ Use int as example, similar for double

 First way:
◦ Use nextInt()
int number = scanner.nextInt();

 Second way:
◦ Use nextLine(), Integer.parseInt()
String input = scanner.nextLine();
int number = Integer.parseInt(input);

 The constructor takes an object of type
java.io.InputStream – stores information
about the connection between an input device
and the computer or program
◦ Example: System.in

 Recall – only associate one instance of
Scanner with System.in in your program
◦ Otherwise, get bugs

 The same applies for both console input and
file input

 We can use a different version of a Scanner
that takes a File instead of System.in

 Everything works the same!

 To read from a disk file, construct a FileReader

 Then, use the FileReader to construct a Scanner
object

FileReader rdr = newFileReader("input.txt");
Scanner fin = new Scanner(rdr);

 java.io.File
◦ associated with an actual file on hard drive
◦ used to check file's status

 Constructors
◦ File(<full path>)
◦ File(<path>, <filename>)

 Methods
◦ exists()
◦ canRead(), canWrite()
◦ isFile(), isDirectory()

 java.io.FileReader
◦ Associated with File object
◦ Translates data bytes from File object
into a stream of characters (much like
InputStream vs. InputStreamReader)

 Constructors
◦ FileReader(<File object>);

 Methods
◦ read(), readLine()
◦ close()

 We will use a PrintWriter object to write to
a file
◦ What if file already exists?  Empty file
◦ Doesn’t exist?  Create empty file with that name

 How do we use a PrintWriter object?
◦ Have we already seen one?

 The out field of the System class is a
PrintWriter object associated with the console
◦ We will associate our PrintWriter with a file now

PrintWriter fout = new PrintWriter("output.txt");
fout.println(29.95);
fout.println(new Rectangle(5, 10, 15, 25));
fout.println("Hello, World!");

 This will print the exact same information as
with System.out (except to a file “output.txt”)!

 Only main difference is that we have to close
the file stream when we are done writing

 If we do not, not all output will written

 At the end of output, call close()

fout.close();

 When determining a file name, the default is
to place in the same directory as your .class
files

 If we want to define other place, use an
absolute path (e.g. c:\My Documents)

in = new
FileReader(“c:\\homework\\input.dat”);

import java.io.*;
public class dupl {

public static void main(String args[]) throws IOException {
FileReader in = null;
FileWriter out = null;

try {
in = new FileReader("input.txt");
out = new FileWriter("output.txt");

int c;
while ((c = in.read()) != -1) {

out.write(c);
}

}finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
}

}
}

}

 Storing and manipulating data using files is
known as file processing.

 Reading/Writing of data in a file can be
performed at the level of bytes, characters,
or fields depending on application
requirements.

 Java also provides capabilities to read and
write class objects directly. The process of
reading and writing objects is called object
serialisation.

FILE* fp;

fp = fopen(“In.file”, “rw”);
fscanf(fp, ……);
frpintf(fp, …..);
fread(………, fp);
fwrite(……….., fp);

 The flow of data into a program (input) may come from
different devices such as keyboard, mouse, memory, disk,
network, or another program.

 The flow of data out of a program (output) may go to the
screen, printer, memory, disk, network, another program.

 Both input and output share a certain common property
such as unidirectional movement of data – a sequence of
bytes and characters and support to the sequential access
to the data.

 Java Uses the concept of
Streams to represent the
ordered sequence of data,
a common characteristic
shared by all I/O devices.

 Streams presents a
uniform, easy to use,
object oriented interface
between the program and
I/O devices.

 A stream in Java is a path
along which data flows
(like a river or pipe along
which water flows).

 The concepts of
sending data from one
stream to another (like
a pipe feeding into
another pipe) has
made streams powerful
tool for file processing.

 Connecting streams
can also act as filters.

 Streams are classified
into two basic types:
◦ Input Steam
◦ Output Stream

Source Program
Input Streamreads

SourceProgram

Output Stream

writes

 Input/Output related classes are defined
in java.io package.

 Input/Output in Java is defined in terms
of streams.

 A stream is a sequence of data, of no
particular length.

 Java classes can be categorised into two
groups based on the data type one which
they operate:
◦ Byte streams
◦ Character Streams

Byte Streams Character streams

Operated on 8 bit (1
byte) data.

Operates on 16-bit
(2 byte) unicode
characters.

Input
streams/Output
streams

Readers/ Writers

Byte Stream
classes

Character Stream
classes

InputStream
ObjectInputStream

SequenceInputStream

ByteArrayInputStream

PipedInputStream

FilterInputStream

PushbackInputStream

DataInputStrea
m

BufferedInputStrea
m

public abstract int read() Reads a byte and returns as
a integer 0-255

public int read(byte[] buf,
int offset, int count)

Reads and stores the bytes
in buffer starting at offset.
Count is the maximum read.

public int read(byte[] buf) Same as previous offset=0
and length=buf.length()

public long skip(long count) Skips count bytes.

public int available() Returns the number of bytes
that can be read.

public void close() Closes stream

 Count total number of bytes in the file
import java.io.*;

class CountBytes {
public static void main(String[] args)

throws FileNotFoundException, IOException
{

FileInputStream in;
in = new FileInputStream(“InFile.txt”);

int total = 0;
while (in.read() != -1)

total++;
System.out.println(total + “ bytes”);

}
}

 JVM throws exception and terminates the program
since there is no exception handler defined.

Exception in thread "main"
java.io.FileNotFoundException: FileIn.txt (No such
file or directory)

at java.io.FileInputStream.open(Native Method)
at

java.io.FileInputStream.<init>(FileInputStream.java:
64)

at CountBytes.main(CountBytes.java:12)

OutputStream
ObjectOutputStream

SequenceOutputStream

ByteArrayOutputStream

PipedOutputStream

FilterOutputStream

PrintStream

DataOutputStream BufferedOutputStream

public abstract void
write(int b)

Write b as bytes.

public void write(byte[] buf,
int offset, int count)

Write count bytes starting
from offset in buf.

public void write(byte[]
buf)

Same as previous offset=0
and count = buf.length()

public void flush() Flushes the stream.

public void close() Closes stream

 Read from standard in and write to standard out

import java.io.*;

class ReadWrite {
public static void main(string[] args)

throws IOException
{

int b;
while ((b = System.in.read()) != -1)
{

System.out.write(b);
}

}

I/O Streams

• A stream is a sequence of bytes that flows from a
source to a destination

• In a program, we read information from an input
stream and write information to an output stream

• A program can manage multiple streams at a time

• The java.io package contains many classes that
allow us to define various streams with specific
characteristics

I/O Stream Categories

• The classes in the I/O package divide input and
output streams into other categories

• An I/O stream is either a
– character stream, which deals with text data
– byte stream, which deals with byte data

• An I/O stream is also either a
– data stream, which acts as either a source or destination
– processing stream, which alters or manages information

in the stream

I/O class hierarchy
o class java.lang.Object

o class java.io.InputStream
o class java.io.ByteArrayInputStream
o class java.io.FileInputStream
o class java.io.FilterInputStream

o class java.io.OutputStream
o class java.io.ByteArrayOutputStream
o class java.io.FileOutputStream
o class java.io.FilterOutputStream

o class java.io.Reader
o class java.io.BufferedReader
o …
o class java.io.InputStreamReader

o class java.io.Writer
o class java.io.BufferedWriter
o …
o class java.io.OutputStreamWriter

Sources of data streams

• There are three standard I/O streams:
– standard input – defined by System.in
– standard output – defined by System.out
– standard error – defined by System.err

• We use System.out when we execute
println statements

• System.in is declared to be a generic
InputStream reference, and therefore usually
must be mapped to a more useful stream with
specific characteristics

• FileInputStream and FileReader are
classes whose constructors open a file for reading

Processing streams

• Processing classes have constructors that take
InputSteams as input and produce InputStreams
with added functionality

• BufferedReader, and BufferedWriter allow you to
write bigger chunks of text to a stream.
– Buffering is a way of combining multiple reads or

writes into a single action. It is a good idea when
working with text.

– Examples: readLine() in BufferedReader and newLine()
in BufferedWriter

IOExceptions

• The following exception classes are defined in the
java.io package:
CharConversionException
EOFException
FileNotFoundException
InterruptedIOException
InvalidClassException
InvalidObjectException
NotActiveException
NotSerializableException
ObjectStreamException
OptionalDataException
StreamCorruptedException
SyncFailedException
UnsupportedEncodingException
UTFDataFormatException
WriteAbortedException

 The streaming interface to I/O in Java
provides a clean abstraction for a complex
and often cumbersome task.

 The composition of the filtered stream
classes allows you to dynamically build the
custom streaming interface to suit your data
transfer requirements.

 Java programs written to adhere to the
abstract, high-level InputStream,
OutputStream, Reader, and Writer classes will
function properly in the future even when
new and improved concrete stream classes
are invented.

 This model works very well when we switch
from a file system-based set of streams to
the network and socket streams.

 Finally, serialization of objects is expected to
play an increasingly important role in Java
programming in the future.

 Java’s serialization I/O classes provide a
portable solution to this sometimes tricky
task programming.

Applets

• There are two types of Java programs:
- Applications and Applets

• We will focus on applets.
- an applet is a Java program that can be viewed on a Web
browser that supports the Java language.

• The easiest way to explain what an applet is and how it
works is by example.

Applet Example

• The applet Example:
import java.awt.*;
import java.applet.*;
public class appl extends Applet

{
public void paint(Graphics g)

{
g.drawOval(40,40,120,150);
g.drawOval(57,75,30,20);
g.drawOval(110,75,30,20);
g.fillOval(68,81,10,10);
g.fillOval(121,81,10,10);
g.drawOval(85,100,30,30);
g.fillArc(60,125,80,40,180,180);
g.drawOval(25,92,15,30);
g.drawOval(160,92,15,30);
}

}

appl Applet

• After compiling the code, the class file is called by an
HTML document in a web browser or applet runner
(appletviewer) and the output will be displayed on the
screen.

• The HTML code (stored in file appl.html) to call an applet
is:

<applet code = “filename.class”
width = “width of applet in pixels”
height = “height of applet in pixels”>

</applet>
• applet runner:

- appletviewer appl.html

Applet Example

• Example (appl.html):

/*<applet code="appl.class"Width=250
height=200></applet>*/

Life Cycle of an Applet

• An Applet executes within an environment provided by a
Web browser or a tool such as the applet viewer.

• It does not have a main() method
• There are four methods that are called during the life

cycle of an applet:
init(),
start(),
stop(),
destroy().

Life Cycle of an Applet

• init() method is called only when the applet begins execution.
It is common to place code here that needs to be executed only
once, such as reading parameters that are defined in the HTML
file.

• start() method is executed after the init() method completes
execution. In addition, this method is called by the applet
viewer or Web browser to resume execution of the applet.

• stop() method is called by the applet viewer or Web browser to
suspend execution of an applet.
- the start() and stop() methods may be called multiple times

during the life cycle of the applet.

import Statements

• The first two lines of the program are:

import java.applet.*;

import.java.awt.*;

• These two lines “import” or let the Java compiler know

that we want to use classes that are in the packages
java. applet and java. awt.
- The java.applet package:

contains definitions for the applet class
- The java.awt package:

contains classes for displaying graphics

import Statements

• The “*” acts as a wildcard that will import all of the
classes in the package

• Difference between this “*” and the one used at a
command
prompt.
- You can not use it to indicate partial names such as L* to

import all the classes that start with L.

• The “*” will import all the public classes in a package but
does not import the subpackages.

import Statements

- To import all classes in a package hierarchy, you must
import each level (or subpackage) explicitly.

import java. awt.*; does not import the “peer” subpackage.
To import the “peer” subpackage you must do it explicitly.
Example:

import java.awt.event.*;
import.java.awt.image.*;

import Statement Syntax

• The form of an import statement is as follows:
- import packageName .*;

or
import packageName. className ;
Examples: import java.applet.Applet;

import java.awt.Graphics;

• import statements must appear before any of the names
defined in the import are used.

• It is a strong recommendation that all imports appear at
the beginning of your program.

drawString() method

• The drawString() method belongs to the Graphics class
• g is a Graphics object and we want it to execute it’s own

drawString() method.
• We also pass it what we want to draw on the screen and

where we want the graph to be drawn.
• The drawString() method is defined in the Graphics as

follows:
Public void drawString(String s, int x, int y)

{
Code to draw s on the screen at location x, y

}

Graphics

Graphics

• The java.awt package contains all the necessary classes
you need to create graphical user interfaces (GUIs).

• Most of the graphics operations in Java are methods
defined in the Graphics class.

• You don’t have to create an instance of the Graphics
class because in the applet’s paint() method, a
Graphics object is provided for you. By drawing in that
object, you draw onto your applet which appears on the
screen.

• The Graphics class is part of the java. awt package, so
make sure you import it into your Java code.
- import java. awt. Graphics;

Lines

• To draw a line onto the screen, use the drawLine()
method:
- void drawLine(int x1, int y1, int x2, int y2);
- This draws a line from the point with coordinates (x1, y1) to the

point with coordinates (x2, y2).
- Example:

import java. awt. Graphics;
public class MyLine extends java. applet. Applet {

public void paint(Graphics g) {
g. drawLine(25,25, 75,75);

}
}

- There is no way to change the line thickness in Java.
So how do we make thicker lines?

Rectangles

• To draw a rectangle on the screen, use the drawRect()
method:
- void drawRect(int x, int y, int width, int height)
- This draws an outline of a rectangle with the top left corner of the

rectangle having the point (x, y). The size of the rectangle is
governed by the width and height arguments.

• To fill in the rectangle we would use the method fillRect().
This works in the same way as drawRect() but fills in the
rectangle with the current drawing color.

• To change the current drawing color we use the method:
- void setColor(Color c)
- The drawing color stays fixed until it is changed by another call to

the setColor() method.

The Color Class
• This class contains 13 constant values that can be used:

- black, blue, cyan, darkGray, Gray, green, lightGray, magenta,
orange, pink, red, white, yellow

• To address them we have to reference them through the
Color class
- eg. Color. black
- Too set the current color to blue:

g. setColor(Color. blue)

• Colors in Java are described by the RGB (Red, Green,
Blue) model.
- This model specifies the amount of red, green, and blue in a

color.
- The intensity of each component is measured as an integer

between
0 and 255, with 0 representing no light.

(0,0,0) is black
(128,128,128) is medium gray

The Color Class

• To declare a new color in Java, use the “new” operator
- Color myColor = new Color(255, 0, 128);
- We now have a new color and since we know it is an object of the

Color class we can use it directly
g. setColor(myColor);

- You can also define the color “on the fly” or in line with the
setColor() method

g. setColor(new Color(255,0,128));

The Font Class
• There are five basic fonts in Java

- SanSerif (Helvetica), Serif (Times Roman), Monospaced (Courier),
Dialog, DialogInput

• There are some constant values associated with the Font
class as well.
- Font.BOLD, Font.PLAIN, Font.ITALIC

• Create a Font object by using the “new” operator
- Font myFont = new Font(“Helvetica”, Font.BOLD, 12);

- After creating a font, you have to set it before it can be used:
g.setFont(myFont);

- You can also do this in line with the setFont() method
g.setFont(new Font(“Helvetica”, Font.BOLD, 12));

• You can also combine styles by adding them together, for
example

Font myFont = new Font(“Helvetica”, Font.BOLD+ Font.ITALIC, 12)

Java Applet
Applet is a special type of program that is embedded in the webpage
to generate the dynamic content. It runs inside the browser and
works at client side.

Advantage of Applet
There are many advantages of applet. They are as follows:
It works at client side so less response time.
Secured
It can be executed by browsers running under many plateforms,
including Linux, Windows, Mac Os etc.

Lifecycle of Java Applet
Applet is initialized.
Applet is started.
Applet is painted.
Applet is stopped.
Applet is destroyed.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited.
It provides 4 life cycle methods of applet.
public void init(): is used to initialized the Applet. It is invoked only
once.
public void start(): is invoked after the init() method or browser is
maximized. It is used to start the Applet.
public void stop(): is used to stop the Applet. It is invoked when
Applet is stop or browser is minimized.
public void destroy(): is used to destroy the Applet. It is invoked
only once.

java.awt.Component class

The Component class provides 1 life cycle method of applet.
public void paint(Graphics g): is used to paint the Applet. It
provides Graphics class object that can be used for drawing oval,
rectangle, arc etc.

Java Applet
Applet is a special type of program that is embedded in the webpage
to generate the dynamic content. It runs inside the browser and
works at client side.

Advantage of Applet
There are many advantages of applet. They are as follows:
It works at client side so less response time.
Secured
It can be executed by browsers running under many platforms,
including Linux, Windows, Mac Os etc.

Lifecycle of Java Applet
Applet is initialized.
Applet is started.
Applet is painted.
Applet is stopped.
Applet is destroyed.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited.
It provides 4 life cycle methods of applet.
public void init(): is used to initialized the Applet. It is invoked only
once.
public void start(): is invoked after the init() method or browser is
maximized. It is used to start the Applet.
public void stop(): is used to stop the Applet. It is invoked when
Applet is stop or browser is minimized.
public void destroy(): is used to destroy the Applet. It is invoked
only once.

java.awt.Component class

The Component class provides 1 life cycle method of applet.
public void paint(Graphics g): is used to paint the Applet. It
provides Graphics class object that can be used for drawing oval,
rectangle, arc etc.

Uses

Java applets are used to provide interactive features to
web applications and can be executed by browsers for many
platforms.
They are small, portable Java programs embedded in HTML
pages and can run automatically when the pages are viewed.

AWT (Abstract Windowing Toolkit)

The AWT is roughly broken into three categories
Components

Layout Managers

Graphics

AWT Class Hierarchy

PanelButton

Checkbox

Choice

Label

List

Component

Container FrameWindow

TextArea

TextFieldTextComponent

Component

Component is the superclass of most of the displayable
classes defined within the AWT. Note: it is abstract.
MenuComponent is another class which is similar to
Component except it is the superclass for all GUI items
which can be displayed within a drop-down menu.
The Component class defines data and methods which
are relevant to all Components

setBounds
setSize
setLocation
setFont
setEnabled
setVisible
setForeground -- colour
setBackground -- colour

Container

Container is a subclass of Component. (ie. All containers
are themselves, Components)
Containers contain components
For a component to be placed on the screen, it must be
placed within a Container
The Container class defined all the data and methods
necessary for managing groups of Components

add
getComponent
getMaximumSize
getMinimumSize
getPreferredSize
remove
removeAll

Windows and Frames

The Window class defines a top-level Window with no
Borders or Menu bar.

Usually used for application splash screens

• Frame defines a top-level Window with Borders and a
Menu Bar
• Frames are more commonly used than Windows

Once defined, a Frame is a Container which can contain
Components

Frame aFrame = new Frame(Hello World);
aFrame.setSize(100,100);
aFrame.setLocation(10,10);
aFrame.setVisible(true);

Panels

When writing a GUI application, the GUI portion can
become quite complex.
To manage the complexity, GUIs are broken down into
groups of components. Each group generally provides a
unit of functionality.
A Panel is a rectangular Container whose sole purpose is
to hold and manage components within a GUI.

Panel aPanel = new Panel();
aPanel.add(new Button("Ok"));
aPanel.add(new Button("Cancel"));

Frame aFrame = new Frame("Button Test");
aFrame.setSize(100,100);
aFrame.setLocation(10,10);

aFrame.add(aPanel);

Buttons

This class represents a push-button which displays some
specified text.
When a button is pressed, it notifies its Listeners. (More
about Listeners in the next chapter).
To be a Listener for a button, an object must implement the
ActionListener Interface.

Panel aPanel = new Panel();
Button okButton = new Button("Ok");
Button cancelButton = new Button("Cancel");

aPanel.add(okButton));
aPanel.add(cancelButton));

okButton.addActionListener(controller2);
cancelButton.addActionListener(controller1);

Labels

This class is a Component which displays a single line of
text.
Labels are read-only. That is, the user cannot click on a
label to edit the text it displays.
Text can be aligned within the label

Label aLabel = new Label("Enter password:");
aLabel.setAlignment(Label.RIGHT);

aPanel.add(aLabel);

List

This class is a Component which displays a list of Strings.
The list is scrollable, if necessary.
Sometimes called Listbox in other languages.
Lists can be set up to allow single or multiple selections.
The list will return an array indicating which Strings are
selected
List aList = new List();

aList.add("Calgary");
aList.add("Edmonton");
aList.add("Regina");
aList.add("Vancouver");

aList.setMultipleMode(true);

Checkbox

This class represents a GUI checkbox with a textual label.
The Checkbox maintains a boolean state indicating whether
it is checked or not.
If a Checkbox is added to a CheckBoxGroup, it will behave
like a radio button.

Checkbox creamCheckbox = new CheckBox("Cream");
Checkbox sugarCheckbox = new CheckBox("Sugar");
[]
if (creamCheckbox.getState())
{

coffee.addCream();
}

Choice

This class represents a dropdown list of Strings.
Similar to a list in terms of functionality, but displayed
differently.
Only one item from the list can be selected at one time and
the currently selected element is displayed.

Choice aChoice = new Choice();
aChoice.add("Calgary");
aChoice.add("Edmonton");
aChoice.add("Alert Bay");
[]

String selectedDestination= aChoice.getSelectedItem();

TextField

This class displays a single line of optionally editable text.
This class inherits several methods from TextComponent.
This is one of the most commonly used Components in the
AWT

TextField emailTextField = new TextField();
TextField passwordTextField = new TextField();
passwordTextField.setEchoChar("*");
[…]

String userEmail = emailTextField.getText();
String userpassword = passwordTextField.getText();

TextArea

This class displays multiple lines of optionally editable text.
This class inherits several methods from TextComponent.
TextArea also provides the methods: appendText(),
insertText() and replaceText()

// 5 rows, 80 columns
TextArea fullAddressTextArea = new TextArea(5, 80);
[]

String userFullAddress= fullAddressTextArea.getText();

Layout Managers

Since the Component class defines the setSize() and
setLocation() methods, all Components can be sized and
positioned with those methods.
Problem: the parameters provided to those methods are
defined in terms of pixels. Pixel sizes may be different
(depending on the platform) so the use of those methods
tends to produce GUIs which will not display properly on
all platforms.
Solution: Layout Managers. Layout managers are
assigned to Containers. When a Component is added to
a Container, its Layout Manager is consulted in order to
determine the size and placement of the Component.
NOTE: If you use a Layout Manager, you can no longer
change the size and location of a Component through the
setSize and setLocation methods.

Layout Managers (cont)

There are several different LayoutManagers, each of which
sizes and positions its Components based on an algorithm:

FlowLayout

BorderLayout

GridLayout

For Windows and Frames, the default LayoutManager is
BorderLayout. For Panels, the default LayoutManager is
FlowLayout.

Flow Layout

The algorithm used by the FlowLayout is to lay out
Components like words on a page: Left to right, top to
bottom.
It fits as many Components into a given row before moving
to the next row.

Panel aPanel = new Panel();

aPanel.add(new Button("Ok"));

aPanel.add(new Button("Add"));

aPanel.add(new Button("Delete"));

aPanel.add(new Button("Cancel"));

Border Layout

The BorderLayout Manager breaks the Container up into 5
regions (North, South, East, West, and Center).
When Components are added, their region is also
specified:

Frame aFrame = new Frame();

aFrame.add("North", new Button("Ok"));

aFrame.add("South", new Button("Add"));

aFrame.add("East", new Button("Delete"));

aFrame.add("West", new Button("Cancel"));

aFrame.add("Center", new Button("Recalculate"));

Border Layout (cont)

The regions of the BorderLayout are defined as follows:

Center

North

South

West East

Grid Layout

The GridLayout class divides the region into a grid of
equally sized rows and columns.
Components are added left-to-right, top-to-bottom.
The number of rows and columns is specified in the
constructor for the LayoutManager.

Panel aPanel = new Panel();

GridLayout theLayout = new GridLayout(2,2);

aPanel.setLayout(theLayout);

aPanel.add(new Button("Ok"));

aPanel.add(new Button("Add"));

aPanel.add(new Button("Delete"));

aPanel.add(new Button("Cancel"));

Graphics

It is possible to draw lines and various shapes within a
Panel under the AWT.
Each Component contains a Graphics object which defines
a Graphics Context which can be obtained by a call to
getGraphics().
Common methods used in Graphics include:

drawLine
drawOval
drawPolygon
drawPolyLine
drawRect
drawRoundRect
drawString
draw3DRect
fill3DRect
fillArc

 fillOval
 fillPolygon
 fillRect
 fillRoundRect
 setColor
 setFont
 setPaintMode
 drawImage

 Component
◦ Canvas
◦ Scrollbar
◦ Button
◦ Checkbox
◦ Label
◦ List
◦ Choice
◦ TextComponent

 TextArea
 TextField

 Component
◦ Container

 Panel
 Window

 Dialog
 FileDialog

 Frame

 MenuComponent
◦ MenuItem

 Menu

import java.awt.*;

public class TestFrame extends Frame {
public TestFrame(String title){

super(title);
}
public static void main(String[] args){

Frame f = new TestFrame("TestFrame");
f.setSize(400,400);
f.setLocation(100,100);
f.show();

}
}

import java.awt.*;
public class button {
public static void main(String[] args) {

Frame f=new Frame("Button Example");
Button b=new Button("Click Here");
b.setBounds(50,100,80,30);
f.add(b);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
}

import java.awt.event.*;
import java.awt.*;
import javax.swing.*;
class text extends JFrame {

static JFrame f;
static JLabel l;
text()
{
}
public static void main(String[] args)
{

f = new JFrame("label");
l = new JLabel();
l.setText("label text");
JPanel p = new JPanel();
p.add(l);
f.add(p);
f.setSize(300, 300);
f.show();

}
}

import javax.swing.*;
public class checkbox
{

checkbox(){
JFrame f= new JFrame("CheckBox Example");
JCheckBox checkBox1 = new JCheckBox("C++");
checkBox1.setBounds(100,100, 50,50);
JCheckBox checkBox2 = new JCheckBox("Java", true);
checkBox2.setBounds(100,150, 50,50);
f.add(checkBox1);
f.add(checkBox2);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
public static void main(String args[])

{
new checkbox();
}

}

import java.awt.*;
import javax.swing.*;
class choice {

static Choice c;
static JFrame f;
choice()
{
}
public static void main(String args[])
{

f = new JFrame("choice");
JPanel p = new JPanel();
c = new Choice();
c.add("Andrew");
c.add("Arnab");
c.add("Ankit");
p.add(c);
f.add(p);
f.show();
f.setSize(300, 300);

}
}

import java.awt.*;
public class TextAreaExample
{

TextAreaExample(){
Frame f= new Frame();

TextArea area=new TextArea("Welcome");
area.setBounds(10,30, 300,300);
f.add(area);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
public static void main(String args[])
{

new TextAreaExample();
}
}

How to Use TextField
import javax.swing.*;
class TextFieldExample
{
public static void main(String args[])

{
JFrame f= new JFrame("TextField Example");
JTextField t1,t2;
t1=new JTextField("Welcome");
t1.setBounds(50,100, 200,30);
t2=new JTextField("AWT Components");
t2.setBounds(50,150, 200,30);
f.add(t1); f.add(t2);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);
}
}

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class ListEx1
{
String [] seasons;
Frame jf;
List list;
Label label1;
ListEx1()
{
jf= new Frame("List");
list= new List(7);
label1 = new Label("Select your favorite sports from the list :");
list.add("Badminton");
list.add("Hockey");
list.add("Tennis");
list.add("Football");
list.add("Cricket");

list.add("Formula One");
list.add("Rugby");
jf.add(label1);
jf.add(list);
jf.setLayout(new FlowLayout());
jf.setSize(260,220);
jf.setVisible(true);
}
public static void main(String... ar)
{
new ListEx1();
}
}

38
1

import javax.swing.*;
class MenuExample
{

JMenu menu, submenu;
JMenuItem i1, i2, i3, i4, i5;
MenuExample(){
JFrame f= new JFrame("Menu and MenuItem

Example");
JMenuBar mb=new JMenuBar();
menu=new JMenu("Menu");
submenu=new JMenu("Sub Menu");
i1=new JMenuItem("Item 1");
i2=new JMenuItem("Item 2");
i3=new JMenuItem("Item 3");
i4=new JMenuItem("Item 4");
i5=new JMenuItem("Item 5");
menu.add(i1); menu.add(i2); menu.add(i3);
submenu.add(i4); submenu.add(i5);

menu.add(submenu);
mb.add(menu);
f.setJMenuBar(mb);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
public static void main(String args[])
{
new MenuExample();
}
}

 With event-driven programming, events are
detected by a program and handled
appropriately

 Events: moving the mouse
clicking the button

pressing a key
sliding the scrollbar thumb

choosing an item from a menu

1 Prepare to accept events
import package java.awt.event

2 Start listening for events
include appropriate methods

3 Respond to events
implement appropriate abstract method

 Import package java.awt.event
 Applet manifests its desire to accept events

by promising to “implement” certain methods
 Example:

“ActionListener” for Button events
“AdjustmentListener”

for Scrollbar events

 To make the applet “listen” to a particular
event, include the appropriate
“addxxxListener”.

 Examples:
addActionListener(this)
shows that the applet is interested in
listening to events generated by the
pushing of a certain button.

 Example
addAdjustmentListener(this)
shows that the applet is interested in
listening to events generated by the
sliding of a certain scroll bar thumb.

 “this” refers to the applet itself - “me” in
English

 The appropriate abstract methods are
implemented.

 Example:
actionPerformed() is automatically
called whenever the user clicks the
button.

Thus, implement actionPerformed()
to respond to the button event.

 Example:
adjustmentValueChanged()
is automatically invoked whenever
the user slides the scroll bar thumb.
So adjustmentValueChanged() needs to
be implemented.

 In actionPerformed(ActionEvent evt),
ActionEvent is a class in java.awt.event.

north

center

sout
h leftMsg rightMsgcenterValue

ranger

statement

pan2

pan3pan1

StatBar

 For the user to interact with a GUI, the
underlying operating system must support
event handling.
1) operating systems constantly monitor events

such as keystrokes, mouse clicks, voice
command, etc.

2) operating systems sort out these events and
report them to the appropriate application
programs

3) each application program then decides what to
do in response to these events

 An event is an object that describes a state
change in a source.

 It can be generated as a consequence of a
person interacting with the elements in a
graphical user interface.

 Some of the activities that cause events to
be generated are pressing a button,
entering a character via the keyboard,
selecting an item in a list, and clicking the
mouse.

 Events may also occur that are not directly
caused by interactions with a user interface.

 For example, an event may be generated
when a timer expires, a counter exceeds a
value, a software or hardware failure
occurs, or an operation is completed.

 Events can be defined as needed and
appropriate by application.

 A source is an object that generates an event.
 This occurs when the internal state of that object changes in

some way.
 Sources may generate more than one type of event.
 A source must register listeners in order for the listeners to

receive notifications about a specific type of event.
 Each type of event has its own registration method.
 General form is:

public void addTypeListener(TypeListener el)
Here, Type is the name of the event and el is a reference to
the event listener.

 For example,
1. The method that registers a keyboard event listener is

called addKeyListener().
2. The method that registers a mouse motion listener is

called addMouseMotionListener().

L 1.5

 When an event occurs, all registered
listeners are notified and receive a copy of
the event object. This is known as
multicasting the event.

 In all cases, notifications are sent only to
listeners that register to receive them.

 Some sources may allow only one listener to
register. The general form is:
public void addTypeListener(TypeListener
el) throws
java.util.TooManyListenersException
Here Type is the name of the event and el
is a reference to the event listener.

 When such an event occurs, the registered
listener is notified. This is known as
unicasting the event.

 A source must also provide a method that
allows a listener to unregister an interest in a
specific type of event.

 The general form is:
public void removeTypeListener(TypeListener
el)
Here, Type is the name of the event and el is
a reference to the event listener.

 For example, to remove a keyboard listener,
you would call removeKeyListener().

 The methods that add or remove listeners are
provided by the source that generates events.

 For example, the Component class provides
methods to add and remove keyboard and
mouse event listeners.

 The Event classes that represent events are at the
core of Java's event handling mechanism.

 Super class of the Java event class hierarchy is
EventObject, which is in java.util. for all events.

 Constructor is :
EventObject(Object src)

Here, src is the object that generates this event.
 EventObject contains two methods: getSource()

and toString().
 1. The getSource() method returns the source of

the event. General form is : Object getSource()
 2. The toString() returns the string equivalent of

the event.

 EventObject is a superclass of all events.
 AWTEvent is a superclass of all AWT events

that are handled by the delegation event
model.

 The package java.awt.event defines several
types of events that are generated by various
user interface elements.

 ActionEvent: Generated when a button is pressed, a
list item is double clicked, or a menu item is
selected.

 AdjustmentEvent: Generated when a scroll bar is
manipulated.

 ComponentEvent: Generated when a component is
hidden, moved, resized, or becomes visible.

 ContainerEvent: Generated when a component is
added to or removed from a container.

 FocusEvent: Generated when a component gains or
loses keyboard focus.

 InputEvent: Abstract super class for all component
input event classes.

 ItemEvent: Generated when a check box or list item
is clicked; also

 occurs when a choice selection is made or a
checkable menu item is selected or deselected.

 KeyEvent: Generated when input is received from
the keyboard.

 MouseEvent: Generated when the mouse is
dragged, moved, clicked, pressed, or released; also
generated when the mouse enters or exits a
component.

 TextEvent: Generated when the value of a text area
or text field is changed.

 WindowEvent: Generated when a window is
activated, closed, deactivated, deiconified,
iconified, opened, or quit.

 A listener is an object that is notified when an event occurs.
 Event has two major requirements.

1. It must have been registered with one or more sources to
receive notifications about specific types of events.

2. It must implement methods to receive and process these
notifications.

 The methods that receive and process events are defined in a
set of interfaces found in java.awt.event.

 For example, the MouseMotionListener interface defines two
methods to receive notifications when the mouse is dragged
or moved.

 Any object may receive and process one or both of these
events if it provides an implementation of this interface.

 The modern approach to handling events is based on the
delegation event model, which defines standard and
consistent mechanisms to generate and process events.

 Its concept is quite simple: a source generates an event and
sends it to one or more listeners.

 In this scheme, the listener simply waits until it receives an
event.

 Once received, the listener processes the event and then
returns.

 The advantage of this design is that the application logic that
processes events is cleanly separated from the user interface
logic that generates those events.

 A user interface element is able to "delegate“ the processing
of an event to a separate piece of code.

 In the delegation event model, listeners must register with a
source in order to receive an event notification. This provides
an important benefit: notifications are sent only to listeners
that want to receive them.

 This is a more efficient way to handle events than the design
used by the old Java 1.0 approach. Previously, an event was
propagated up the containment hierarchy until it was handled
by a component.

 This required components to receive events that they did not
process, and it wasted valuable time. The delegation event
model eliminates this overhead.
Note

 Java also allows you to process events without using the
delegation event model.

 This can be done by extending an AWT component.

 mouse events can be handled by implementing the
MouseListener and the MouseMotionListener
interfaces.

 MouseListener Interface defines five methods. The
general forms of these methods are:

1. void mouseClicked(MouseEvent me)
2. void mouseEntered(MouseEvent me)
3. void mouseExited(MouseEvent me)
4. void mousePressed(MouseEvent me)
5. void mouseReleased(MouseEvent me)

 MouseMotionListener Interface. This interface
defines two methods. Their general forms are :

1. void mouseDragged(MouseEvent me)
2. void mouseMoved(MouseEvent me)

 Keyboard events, can be handled by implementing the
KeyListener interface.

 KeyListner interface defines three methods. The general
forms of these methods are :

1. void keyPressed(KeyEvent ke)
2. void keyReleased(KeyEvent ke)
3. void keyTyped(KeyEvent ke)

 To implement keyboard events implementation to the
above methods is needed.

