

What is VB.NET?

 The VB.NET stands for Visual Basic. Network Enabled Technologies. It is a simple, high-level,

object-oriented programming language developed by Microsoft in 2002. It is a successor of Visual

Basic 6.0, that is implemented on the Microsoft .NET framework. Furthermore, it supports the

OOPs concept, such as abstraction, encapsulation, inheritance, and polymorphism. Therefore,

everything in the VB.NET language is an object, including all primitive data types (Integer, String,

char, long, short, Boolean, etc.), user-defined data types, events, and all objects that inherit from

its base class. It is not a case sensitive language, whereas, C++, Java, and C# are case sensitive

language.

Applications built using the VB.NET language are very reliable and scalable, relying on the .NET

Framework to access all libraries that help to execute a VB.NET program. With this language, you

can develop a fully object-oriented application that is similar to an application created through

another language such as C++, Java, or C#. In addition, applications or programs of VB.NET are

not only running on the window operating system but can also run on Linux or Mac OS.

The VB.NET language is designed in such a way that any new beginner or novice and the

advanced programmer can quickly develop a simple, secure, robust, high performance of web,

windows, console, and mobile application running on .NET Framework.

VB.NET Features

As we know, it is a high-level programming language with many features to develop a secure and

robust application. These are the following features that make it the most popular programming

language.

o It is an object-oriented programming language that follows various oops concepts such as

abstraction, encapsulation, inheritance, and many more. It means that everything in VB.NET

programming will be treated as an object.

o This language is used to design user interfaces for window, mobile, and web-based

applications.

o It supports a rapid application development tool kit. In which a developer does not need to

write all the codes as it can get various code automatically from its libraries. For example,

when we create a form in Visual basic.net, it automatically calls events of various form in

that class.

o It is not a case sensitive language like other languages such as C++, java, etc.

o It supports Boolean condition for decision making in programming.

o It also supports the multithreading concept, in which you can do multiple tasks at the same

time.

o It provides simple events management in .NET application.

https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/c-sharp-tutorial
https://www.javatpoint.com/windows
https://www.javatpoint.com/linux-tutorial
https://www.javatpoint.com/net-framework

o A Window Form enables us to inherit all existing functionality of form that can be used to

create a new form. So, in this way, it reduced the code complexity.

o It uses an external object as a reference that can be used in a VB.NET application.

o Automatic initialized a garbage collection.

o It follows a structured and extensible programming language for error detection and

recovery.

o Conditional compilation and easy to use generic classes.

o It is useful to develop web, window, and mobile applications.

o

Advantages of VB.NET

o The VB.NET executes a program in such a way that runs under CLR (Common Language

Runtime), creating a robust, stable, and secure application.

o It is a pure object-oriented programming language based on objects and classes. However,

these features are not available in the previous version of Visual Basic 6. That's why

Microsoft launched VB.NET language.

o Using the Visual Studio IDE, you can develop a small program that works faster, with a

large desktop and web application.

o The .NET Framework is a software framework that has a large collection of libraries, which

helps in developing more robust applications.

o It uses drop and drag elements to create web forms in .NET applications.

o However, a Visual Basic .NET allows to connect one application to another application that

created in the same language to run on the .NET framework.

o A VB.NET can automatically structure your code.

o The Visual Basic .NET language is also used to transfer data between different layers of the

.NET architecture such that data is passed as simple text strings.

o It uses a new concept of error handling in the Visual Basic .NET Framework. The new

structure is the try, catch, and finally method used to handle exceptions as a unit. In

addition, it allows appropriate action to be taken at the place where it encountered an error.

In this way, it discourages the use of the ON ERROR GOTO statement in .NET

programming.

Disadvantages of VB.NET

1. The VB.NET programming language is unable to handle pointers directly. Because in this

language, it requires a lot of programming, and it is not easy to manage every address by a

pointer. Furthermore, additional coding takes extra CPU cycles, that increases the

processing time. It shows the slowness of the VB.NET application.

2. The VB.NET programming is easy to learn, that increases a large competition between the

programmers to apply the same employment or project in VB.NET. Thus, it reduces a

secure job in the programming field as a VB.NET developer.

3. It uses an Intermediate Language (IL) compilation that can be easily decompiled (reverse

engineered), but there is nothing that can prevent an application from disintegrating.

4. Just-In-Time (JIT) compiler: It is the process through which a computer can interpret IL

(intermediate language) compilation and is also required to run your application. It means

that the target computer needs a JIT compiler to interpret a source program in IL, and this

interpretation requires an additional CPU cycle that degrades the performance of an

application.

5. It contains a large collection of libraries for the JIT compiler that helps to interpret an

application. These large libraries hold a vast space in our system that takes more computing

time.

Introduction to .NET Framework

The .NET Framework is a software development platform that was introduced by Microsoft in the late
1990 under the NGWS. On 13 February 2002, Microsoft launched the first version of the .NET
Framework, referred to as the .NET Framework 1.0.

In this section, we will understand the .NET Framework, characteristics, components, and
its versions.

What is .NET Framework

It is a virtual machine that provide a common platform to run an application that was built using the
different language such as C#, VB.NET, Visual Basic, etc. It is also used to create a form based,
console-based, mobile and web-based application or services that are available in Microsoft
environment. Furthermore, the .NET framework is a pure object oriented, that similar to the Java
language. But it is not a platform independent as the Java. So, its application runs only to the
windows platform.

The main objective of this framework is to develop an application that can run on
the windows platform. The current version of the .Net framework is 4.8.

https://www.javatpoint.com/net-framework
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/windows

Note: The .NET Framework is not only a language, but it is also a software and language

neutral platform.

Components of .NET Framework

There are following components of .NET Framework:

1. CLR (Common Language Runtime)

2. CTS (Common Type System)

3. BCL (Base Class Library)

4. CLS (Common Language Specification)

5. FCL (Framework Class Library)

6. .NET Assemblies

7. XML Web Services

8. Window Services

CLR (common language runtime)

It is an important part of a .NET framework that works like a virtual component of the .NET
Framework to executes the different languages program like c#, Visual Basic, etc. A CLR also helps
to convert a source code into the byte code, and this byte code is known as CIL (Common
Intermediate Language) or MSIL (Microsoft Intermediate Language). After converting into a byte
code, a CLR uses a JIT compiler at run time that helps to convert a CIL or MSIL code into the
machine or native code.

https://www.javatpoint.com/c-sharp-tutorial

CTS (Common Type System)

It specifies a standard that represent what type of data and value can be defined and managed in
computer memory at runtime. A CTS ensures that programming data defined in various languages
should beinteract with each other to share information. For example, in C# we define data type as int,
while in VB.NET we define integer as a data type.

BCL (Base Class Library)

The base class library has a rich collection of libraries features and functions that help to implement
many programming languages in the .NET Framework, such as C #, F #, Visual C ++, and more.
Furthermore, BCL divides into two parts:

1. User defined class library

o Assemblies - It is the collection of small parts of deployment an application's part. It

contains either the DLL (Dynamic Link Library) or exe (Executable) file.

1. In LL, it uses code reusability, whereas in exe it contains only output file/ or

application.

2. DLL file can't be open, whereas exe file can be open.

3. DLL file can't be run individually, whereas in exe, it can run individually.

4. In DLL file, there is no main method, whereas exe file has main method.

2. Predefined class library

o Namespace - It is the collection of predefined class and method that present in .Net. In

other languages such as, C we used header files, in java we used package similarly we

used "using system" in .NET, where using is a keyword and system is a namespace.

CLS (Common language Specification)

It is a subset of common type system (CTS) that defines a set of rules and regulations which should
be followed by every language that comes under the .net framework. In other words, a CLS language
should be cross-language integration or interoperability. For example, in C# and VB.NET language,
the C# language terminate each statement with semicolon, whereas in VB.NET it is not end with
semicolon, and when these statements execute in .NET Framework, it provides a common platform
to interact and share information with each other.

Microsoft .NET Assemblies

A .NET assembly is the main building block of the .NET Framework. It is a small unit of code that
contains a logical compiled code in the Common Language infrastructure (CLI), which is used for
deployment, security and versioning. It defines in two parts (process) DLL and library (exe)
assemblies. When the .NET program is compiled, it generates a metadata with Microsoft Intermediate
Language, which is stored in a file called Assembly.

FCL (Framework Class Library)

It provides the various system functionality in the .NET Framework, that includes classes, interfaces
and data types, etc. to create multiple functions and different types of application such as desktop,

https://www.javatpoint.com/f-sharp-tutorial
https://www.javatpoint.com/cpp-tutorial

web, mobile application, etc. In other words, it can be defined as, it provides a base on which various
applications, controls and components are built in .NET Framework.

Key Components of FCL

1. Object type

2. Implementation of data structure

3. Base data types

4. Garbage collection

5. Security and database connectivity

6. Creating common platform for window and web-based application

Characteristics of .NET Framework

1. CLR (Common Language Runtime)

2. Namespace - Predefined class and function

3. Metadata and Assemblies

4. Application domains

5. It helps to configure and deploy the .net application

6. It provides form and web-based services

7. NET and ASP.NET AJAX

8. LINQ

9. Security and Portability

10. Interoperability

11. It provides multiple environments for developing an application

12.

Versions of .NET Framework

1. On 13 February 2002, Microsoft launched first version of .Net framework 1.0.

2. The second version 2.0 of .net framework was launched on 22 January 2006.

3. Third version 3.0 of .Net framework was released on 21 November 2006.

4. A .Net framework version 3.5 was released on 19 November 2007.

5. Version 4.0 of .Net framework was released on 29 September 2008

6. Version 4.5 of .Net framework was released on 15 August 2012.

7. .Net framework 4.5.1 version was announced on 17 October 2013

8. On 5 May 2014, a 4.5.2 version of .Net framework was released.

9. .Net framework 4.6 version was announced on 12 November 2014

10. .Net framework 4.6.1 version was released on 30 October 2015

11. .Net framework 4.6.2 version was announced on March 30, 2016

12. .Net framework 4.7 version was announced on April 5, 2017

13. .Net framework 4.7.1 version was announced on October 17, 2017

14. Version 4.7.2 of .Net framework was released on 30 April 2018.

15. And currently we are using .Net framework version 4.8 that was released on 18 April 2019

Visual Studio

 Visual Studio is a powerful and customizable programming environment that contains all the
tools you need to build programs quickly and efficiently. It offers a set of tools that help you write and
modify the code for your programs, and also detect and correct errors in your programs.

Before you start learning more about VB.NET programming, it is important to understand the
development environment and identify some of the frequently using programming tools in Visual
Studio IDE.

 1. Menu Bar
 2. Standard Toolbar
 3. ToolBox
 4. Forms Designer
 5. Output Window
 6. Solution Explorer
 7. Properties Window

Visual Basic.NET IDE is built out of a collection of different windows. Some windows are used for
writing code, some for designing interfaces, and others for getting a general overview of files or
classes in your application.

Visual Studio organizes your work in projects and solutions. A solution can contain more than one
project, such as a DLL and an executable that references that DLL. From the following chapters you
will learn how to use these Visual Studio features for your programming needs.

Object Browser to Explore the Framework Class Library

The steps below describe how to use the Visual Studio Object Browser to enumerate and examine
classes in the .Net Framework Class Library

1. To open the "Object Browser' in Visual Studio, you can select View-Object Browser from the
main menu or you can press Ctrl-Alt-J.

2. The Object Browser consists of three panes:
1. Objects
2. Members
3. Descriptions

3. To locate a class in the framework, you can use the search box at the top of the Object
Browser or you can expand the namespaces in the objects pane.

4. When a class or namespace is selected in the object pane, the members of that class or
namespace are displayed in the members pane. As you can see in the image below, I have
selected the mscorlib namespace, the subordinate System.IO namespace, and the
BinaryWriter class within the IO namespace. With that class selected, the members pane is
automatically filled with a list of the members of the BinaryWriter class and the details pane is

filled with details about the BinaryWriter class.

5. When a class member is selected in the Members pane, the class member details are then

displayed in the descriptions pane. In this example, I have selected the WriteBool method of

the BinaryWriter class.

6. Note that the descriptions pane includes details about the member selected, to include a

complete description of the signature, a summary of the member (purpose and usage), a list of
parameters if appropriate and a list of all exceptions that the method might raise.

Toolbox Window

The Toolbox window contains all the controls you can use to build your application‘s interface. This
window is usually retracted, and you must move the pointer over it to view the Toolbox. The controls
in the Toolbox are organized in various tabs, so take a look at them to become familiar with the
controls and their functions. A figure of ToolBox window is illustrated in ―Using the Windows Form
Designer in Visual Basic 2008―.

In the first few chapters, we‘ll work with the controls in the Common Controls and Menus & Toolbars
tabs. The Common Controls tab contains the icons of the most common Windows controls. The Data

https://www.w3computing.com/vb2008/vb-windows-form-designer/
https://www.w3computing.com/vb2008/vb-windows-form-designer/
https://www.w3computing.com/vb2008/vb-windows-form-designer/

tab contains the icons of the objects you will use to build data-driven applications (they‘re explored
later in this tutorial). The Dialogs tab contains controls for implementing the common dialog controls,
which are so common in Windows interfaces; they‘re discussed in Chapter, ‗‗Windows Controls.‘‘

Solution Explorer Window

The Solution Explorer window contains a list of the items in the current solution. A solution can
contain multiple projects, and each project can contain multiple items. The Solution Explorer displays
a hierarchical list of all the components, organized by project. You can right-click any component of
the project and choose Properties in the context menu to see the selected component‘s properties in
the Properties window. If you select a project, you will see the Project Properties dialog box. You will
find more information on project properties in the following chapter.

If the solution contains multiple projects, you can right-click the project you want to become the
startup form and select Set As StartUp Project. You can also add items to a project with the Add Item
command of the context menu, or remove a component from the project with the Exclude From
Project command. This command removes the selected component from the project, but doesn‘t
affect the component‘s file on the disk. The Delete command removes the selected component from
the project and also deletes the component‘s file from the disk.

Properties Window

This window (also known as the Properties Browser) displays all the properties of the selected
component and its settings. Every time you place a control on a form, you switch to this window to
adjust the appearance of the control. You have already seen how to manipulate the properties of a
control through the Properties window.

Many properties are set to a single value, such as a number or a string. If the possible settings of a
property are relatively few, they‘re displayed as meaningful constants in a drop-down list. Other
properties are set through a more elaborate interface. Color properties, for example, are set from
within a Color dialog box that‘s displayed right in the Properties window. Font properties are set
through the usual Font dialog box. Collections are set in a Collection Editor dialog box, in which you
can enter one string for each item of the collection, as you did for the items of the ComboBox control
earlier in this chapter.

If the Properties window is hidden, or if you have closed it, you can either choose View >
Properties Window, or right-click a control on the form and choose Properties. Or you can simply
press F4 to bring up this window. There will be times when a control might totally overlap another
control, and you won‘t be able to select the hidden control and view its properties. In this case, you
can select the desired control in the ComboBox at the top of the Properties window. This box contains

https://www.w3computing.com/vb2008/wp-content/uploads/sites/3/2015/05/1.solution-explorer.png

the names of all the controls on the form, and you can select a control on the form by selecting its
name on this box.

Output Window

The Output window is where many of the tools, including the compiler, send their output. Every time
you start an application, a series of messages is displayed in the Output window. These messages
are generated by the compiler, and you need not understand them at this point. If the Output window
is not visible, choose View > Other Windows > Output from the menu.

Command and Immediate Windows

While testing a program, you can interrupt its execution by inserting a so-called breakpoint. When the
breakpoint is reached, the program‘s execution is suspended, and you can execute a statement in the
Immediate window. Any statement that can appear in your VB code can also be executed in the
Immediate window. To evaluate an expression, enter a question mark followed by the expression you
want to evaluate, as in the following samples, where result is a variable in the program you
interrupted:

1

2

3

? Math.Log(35)

? "The answer is " & result.ToString

You can also send output to this window from within your code with
the Debug.Write and Debug.WriteLine methods. Actually, this is a widely used debugging technique
— to print the values of certain variables before entering a problematic area of the code. There are
more elaborate tools to help you debug your application, and you‘ll find a discussion in the section
―Debugging and Error Handling in Visual Basic 2008‖, but printing a few values to the Immediate
window is a time-honored practice in programming with VB.

In many of the examples of this tutorial, especially in the first few chapters, I use the Debug.WriteLine
statement to print something to the Immediate window. To demonstrate the use of
the DateDiff() function, for example, I‘ll use a statement like the following:

1 Debug.WriteLine(DateDiff(DateInterval.Day, #3/9/2007#, #5/15/2008#))

When this statement is executed, the value 433 will appear in the Immediate window. This statement
demonstrates the syntax of the DateDiff() function, which returns the difference between the two
dates in days. Sending some output to the Immediate window to test a function or display the results
of intermediate calculations is a common practice.

To get an idea of the functionality of the immediate window, switch back to your first sample
application and insert the Stop statement after the End If statement in the button‘s Click event
handler. Run the application, select a language, and click the button on the form. After displaying a
message box, the application will reach the Stop statement and its execution will be suspended.

You‘ll see the immediate window at the bottom of the IDE. If it‘s not visible, open the Debug menu
and choose Windows > Immediate. In the Immediate window, enter the following statement:

1 ? ComboBox1.Items.Count

Then press Enter to execute it. Notice that IntelliSense is present while you‘re typing in the immediate
window. The expression prints the number of items in the Combo Box control. (Don‘t worry about the
numerous properties of the control and the way I present them here; they‘re discussed in detail in
Chapter, ‗‗Basic Windows Controls.‘‘) As soon as you press Enter, the value 5 will be printed on the
following line.

You can also manipulate the controls on the form from within the Immediate window. Enter the
following statement and press Enter to execute it:

1 ComboBox1.SelectedIndex = 4

The fifth item on the control will be selected (the indexing of the items begins with 0). However, you
can‘t see the effects of your changes, because the application isn‘t running. Press F5 to resume the
execution of the application and you will see that the item Cobol is now selected in the ComboBox
control.

The Immediate window is available only while the application‘s execution is suspended. To continue
experimenting with it, click the button on the form to evaluate your choice. When the Stop statement
is executed again, you‘ll be switched to the Immediate window.

Unlike the Immediate window, the Command window is available at design time. The Command
window allows you to access all the commands of Visual Studio by typing their names in this window.
If you enter the string Edit followed by a period, you will see a list of all commands of the Edit menu,
including the ones that are not visible at the time, and you can invoke any of these commands and
pass arguments to them. For example, if you enter Edit. Find ―Margin‖ in the Command window and
then press Enter, the first instance of the string Margin will be located in the open code window. To
start the application, you can type Debug. Start. You can add a new project to the current solution
with the AddProj command, and so on. Most developers hardly ever use this window in designing or
debugging applications.

Error List Window

This window is populated by the compiler with error messages, if the code can‘t be successfully
compiled. You can double-click an error message in this window, and the IDE will take you to the line
with the statement in error — which you should fix. Change the MsgBox() function name
to MsssgBox(). As soon as you leave the line with the error, the name of the function will be
underlined with a wiggly red line and the following error description will appear in the Error List
window:

1 Name ‘MsssgBox‘ is not declared

The IDE Components in Visual Basic 2008

The IDE of Visual Studio 2008 contains numerous components, and it will take you a while to explore
them. It‘s practically impossible to explain in a single chapter what each tool, window, and menu
command does. We‘ll discuss specific tools as we go along and as the topics get more and more
advanced. In this section, I will go through the basic items of the IDE — the ones we‘ll use in the
following few chapters to build simple Windows applications.

The IDE Menu

The IDE menu provides the following commands, which lead to submenus. Notice that most menus
can also be displayed as toolbars. Also, not all options are available at all times. The options that
cannot possibly apply to the current state of the IDE are either invisible or disabled. The Edit menu is
a typical example. It‘s quite short when you‘re designing the form and quite lengthy when you edit
code. The Data menu disappears altogether when you switch to the code editor — you can‘t use the
options of this menu while editing code. If you open an XML document in the IDE, the XML command
will be added to the main menu of Visual Studio.

File Menu

The File menu contains commands for opening and saving projects or project items, as well as
commands for adding new or existing items to the current project. For the time being, use the New >
Project command to create a new project, Open Project/Solution to open an existing project or
solution, Save All to save all components of the current project, and the Recent Projects submenu to
open one of the recent projects.

Edit Menu

The Edit menu contains the usual editing commands. Among these commands are the Advanced
command and the IntelliSense command. Both commands lead to submenus, which are discussed
next. Note that these two items are visible only when you‘re editing your code, and are invisible while
you‘re designing a form.

Edit > Advanced Submenu

The more-interesting options of the Edit > Advanced submenu are the following:

View White Space – Space characters (necessary to indent lines of code and make it easy to read)
are replaced by periods.

Word Wrap – When a code line‘s length exceeds the length of the code window, the line is
automatically wrapped.

Comment Selection/Uncomment Selection – Comments are lines you insert between your code‘s
statements to document your application. Every line that begins with a single quote is a comment; it is
part of the code, but the compiler ignores it. Sometimes, we want to disable a fewlines fromour code
but not delete them (because we want to be able to restore them later). A simple technique to disable
a line of code is to comment it out (insert the comment symbol in front of the line). This command
allows you to comment (or uncomment) large segments of code in a singlemove.

Edit > IntelliSense Submenu

The Edit > IntelliSense menu item leads to a submenu with five options, which are described next.
IntelliSense is a feature of the editor (and of other Microsoft applications) that displays as much
information as possible, whenever possible. When you type the name of a control and the following
period, IntelliSense displays a list of the control‘s properties and methods, so that you can select the
desired one, rather than guessing its name. When you type the name of a function and the opening
parenthesis, IntelliSense will display the syntax of the function — its arguments.

The IntelliSense submenu includes the following options:

List Members – When this option is on, the editor lists all the members (properties, methods, events,
and argument list) in a drop-down list. This list will appear when you enter the name of an object or
control followed by a period. Then you can select the desired member from the list with the mouse or
with the keyboard. Let‘s say your form contains a control named TextBox1 and you‘re writing code for
this form. When you enter the name of the control followed by a period (TextBox1.), a list with the
members of the TextBox control will appear (as seen in Figure 1.12).

Figure 1.12 – Viewing the members of a control in the IntelliSense drop-down list

In addition, a description of the selected member is displayed in a ToolTip box, as you can see in the
same figure. Select the Text property and then enter the equal sign, followed by a string in quotes, as
follows:

1 TextBox1.Text = "Your User Name"

If you select a property that can accept a limited number of settings, you will see the names of the
appropriate constants in a drop-down list. If you enter the following statement, you will see the
constants you can assign to the property (see Figure 1.13):

1 TextBox1.TextAlign =

Figure 1.13 – Viewing the possible settings of a property in the IntelliSense drop-down list

https://www.w3computing.com/vb2008/wp-content/uploads/sites/3/2015/05/1.12.members-intellisense-drop-down-list.png
https://www.w3computing.com/vb2008/wp-content/uploads/sites/3/2015/05/1.13.settings-intellisense-dropdown-list.png

Again, you can select the desired value with the mouse. The drop-down list with the members of a
control or object (the Members list) remains open until you type a terminator key (the Esc or End key)
or select a member by pressing the space bar or the Enter key.

Parameter Info – While editing code, you can move the pointer over a variable, method, or property
and see its declaration in a yellow pop-up box. You can also jump to the variable‘s definition or the
body of a procedure by choosing Go To Definition from the context menu that will appear if you right-
click the variable or method name in the code window.

Quick Info – This is another IntelliSense feature that displays information about commands and
functions. When you type the opening parenthesis following the name of a function, for example, the
function‘s arguments will be displayed in a ToolTip box (a yellow horizontal box). The first argument
appears in bold font; after entering a value for this argument, the next one is shown in bold. If an
argument accepts a fixed number of settings, these values will appear in a drop-down list, as
explained previously.

Complete Word – The Complete Word feature enables you to complete the current word by pressing
Ctrl+spacebar. For example, if you type TextB and then press Ctrl+spacebar, you will see a list of
words that you‘re most likely to type (TextBox, TextBox1, and so on).

Insert Snippet – This command opens the Insert Snippet window at the current location in the code
editor window. Code snippets, which are an interesting feature of Visual Studio 2008, are discussed
in the section ‗‗Using Code Snippets‘‘ later in this chapter.

Edit > Outlining Submenu

A practical application contains a substantial amount of code in a large number of event handlers and
custom procedures (subroutines and functions). To simplify the management of the code window, the
Outlining submenu contains commands that collapse and expand the various procedures.

Let‘s say you‘re finished editing the Click event handlers of several buttons on the form. You can
reduce these event handlers to a single line that shows the names of the procedures and a plus sign
in front of them. You can expand a procedure‘s listing at any time by clicking the plus sign in front of
its name. When you do so, a minus sign appears in front of the procedure‘s name, and you can click
it to collapse the body of the procedure again. The Outlining submenu contains commands to handle
the outlining of the various procedures, or turn off outlining and view the complete listings of all
procedures. You will use these commands as you write applications with substantial amounts of
code:

Toggle Outlining Expansion – This option lets you change the outline mode of the current
procedure. If the procedure‘s definition is collapsed, the code is expanded, and vice versa.

Toggle All Outlining – This option is similar to the Toggle Outlining Expansion option, but it toggles
the outline mode of the current document. A form is reduced to a single statement. A file with multiple
classes is reduced to one line per class.

Stop Outlining – This option turns off outlining and adds a new command to the Outlining submenu,
Start Automatic Outlining, which you can select to turn on automatic outlining again.

Collapse To Definitions – This option reduces the listing to a list of procedure headers.

View Menu

This menu contains commands to display any toolbar or window of the IDE. You have already seen
the Toolbars menu (in the ‗‗Starting a New Project in Visual Basic 2008‘‘ section). The Other Windows
command leads to a submenu with the names of some standard windows, including the Output and
Command windows. The Output window is the console of the application. The compiler‘s messages,
for example, are displayed in the Output window. The Command window allows you to enter and
execute statements. When you debug an application, you can stop it and enter VB statements in the
Command window.

Project Menu

This menu contains commands for adding items to the current project (an item can be a form, a file, a
component, or even another project). The last option in this menu is the Project Properties command,
which opens the project‘s Properties Pages. The Add Reference and Add Web Reference commands
allow you to add references to .NET components and web components, respectively.

Build Menu

The Build menu contains commands for building (compiling) your project. The two basic commands in
this menu are Build and Rebuild All. The Build command compiles (builds the executable) of the
entire solution, but it doesn‘t compile any components of the project that haven‘t changed since the
last build. The Rebuild All command does the same, but it clears any existing files and builds the
solution from scratch.

Debug Menu

This menu contains commands to start or end an application, as well as the basic debugging tools.

Data Menu

This menu contains commands you will use with projects that access data.

Format Menu

The Format menu, which is visible only while you design a Windows or web form, contains
commands for aligning the controls on the form. The commands of this menu are discussed in
Chapter ―GUI Design and Event-Driven Programming in VB‖. The Format menu is invisible when you
work in the code editor — its commands apply to the visible elements of the interface.

Tools Menu

This menu contains a list of useful tools, such as the Macros command, which leads to a submenu
with commands for creating macros. Just as you can create macros in a Microsoft Office application
to simplify many tasks, you can create macros to automate many of the repetitive tasks you perform
in the IDE. The last command in this menu, the Options command, leads to the Options dialog box, in
which you can fully customize the environment. The Choose Toolbox Items command opens a dialog
box that enables you to add more controls to the Toolbox. In Chapter, ‗‗Building Custom Windows

https://www.w3computing.com/vb2008/starting-new-project-vb/

Controls in Visual Basic 2008‘‘ you‘ll learn how to design custom controls and add them to the
Toolbox.

Window Menu

This is the typical Window menu of any Windows application. In addition to the list of open windows, it
also contains the Hide command, which hides all toolboxes, leaving the entire window of the IDE
devoted to the code editor or the Form Designer. The toolboxes don‘t disappear completely; they‘re
all retracted, and you can see their tabs on the left and right edges of the IDE window. To expand a
toolbox, just hover the mouse pointer over the corresponding tab.

Help Menu

This menu contains the various help options. The Dynamic Help command opens the Dynamic Help
window, which is populated with topics that apply to the current operation. The Index command opens
the Index window, in which you can enter a topic and get help on the specific topic.

A VB.Net program basically consists of the following parts −

 Namespace declaration

 A class or module

 One or more procedures

 Variables

 The Main procedure

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello World" −

ImportsSystem

ModuleModule1

'This program will display Hello World

 Sub Main()

 Console.WriteLine("Hello World")

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result −

Hello, World!

Let us look various parts of the above program −

 The first line of the program Imports System is used to include the System namespace in the
program.

 The next line has a Module declaration, the module Module1. VB.Net is completely object
oriented, so every program must contain a module of a class that contains the data and
procedures that your program uses.

 Classes or Modules generally would contain more than one procedure. Procedures contain
the executable code, or in other words, they define the behavior of the class. A procedure
could be any of the following −

o Function

o Sub

o Operator

o Get

o Set

o AddHandler

o RemoveHandler

o RaiseEvent

 The next line('This program) will be ignored by the compiler and it has been put to add
additional comments in the program.

 The next line defines the Main procedure, which is the entry point for all VB.Net programs. The
Main procedure states what the module or class will do when executed.

 The Main procedure specifies its behavior with the statement

Console.WriteLine("Hello World") WriteLine is a method of the Console class defined in
the System namespace. This statement causes the message "Hello, World!" to be displayed
on the screen.

 The last line Console.ReadKey() is for the VS.NET Users. This will prevent the screen from
running and closing quickly when the program is launched from Visual Studio .NET.

Compile & Execute VB.Net Program

If you are using Visual Studio.Net IDE, take the following steps −

 Start Visual Studio.

 On the menu bar, choose File → New → Project.

 Choose Visual Basic from templates

 Choose Console Application.

 Specify a name and location for your project using the Browse button, and then choose the
OK button.

 The new project appears in Solution Explorer.

 Write code in the Code Editor.

 Click the Run button or the F5 key to run the project. A Command Prompt window appears
that contains the line Hello World.

You can compile a VB.Net program by using the command line instead of the Visual Studio IDE −

 Open a text editor and add the above mentioned code.

 Save the file as helloworld.vb

 Open the command prompt tool and go to the directory where you saved the file.

 Type vbc helloworld.vb and press enter to compile your code.

 If there are no errors in your code the command prompt will take you to the next line and
would generate helloworld.exe executable file.

 Next, type helloworld to execute your program.

 You will be able to see "Hello World" printed on the screen.

VB.Net - Basic Controls

An object is a type of user interface element you create on a Visual Basic form by using a toolbox
control. In fact, in Visual Basic, the form itself is an object. Every Visual Basic control consists of
three important elements −

 Properties which describe the object,

 Methods cause an object to do something and

 Events are what happens when an object does something.

Control Properties

All the Visual Basic Objects can be moved, resized or customized by setting their properties. A
property is a value or characteristic held by a Visual Basic object, such as Caption or Fore Color.

Properties can be set at design time by using the Properties window or at run time by using
statements in the program code.

Object.Property=Value

Where

 Object is the name of the object you're customizing.

 Property is the characteristic you want to change.

 Value is the new property setting.

For example,

Form1.Caption="Hello"

You can set any of the form properties using Properties Window. Most of the properties can be set or
read during application execution. You can refer to Microsoft documentation for a complete list of
properties associated with different controls and restrictions applied to them.

Control Methods

A method is a procedure created as a member of a class and they cause an object to do something.
Methods are used to access or manipulate the characteristics of an object or a variable. There are
mainly two categories of methods you will use in your classes −

 If you are using a control such as one of those provided by the Toolbox, you can call any of its
public methods. The requirements of such a method depend on the class being used.

 If none of the existing methods can perform your desired task, you can add a method to a
class.

For example, the MessageBox control has a method named Show, which is called in the code
snippet below −

PublicClassForm1

PrivateSubButton1_Click(ByVal sender AsSystem.Object,ByVal e

AsSystem.EventArgs)

HandlesButton1.Click

MessageBox.Show("Hello, World")

EndSub

EndClass

Control Events

An event is a signal that informs an application that something important has occurred. For example,
when a user clicks a control on a form, the form can raise a Click event and call a procedure that
handles the event. There are various types of events associated with a Form like click, double click,
close, load, resize, etc.

Following is the default structure of a form Load event handler subroutine. You can see this code by
double clicking the code which will give you a complete list of the all events associated with Form
control −

PrivateSubForm1_Load(sender AsObject, e AsEventArgs)HandlesMyBase.Load

'event handler code goes here

End Sub

Here, Handles MyBase.Load indicates that Form1_Load() subroutine handles Load event. Similar
way, you can check stub code for click, double click. If you want to initialize some variables like
properties, etc., then you will keep such code inside Form1_Load() subroutine. Here, important point
to note is the name of the event handler, which is by default Form1_Load, but you can change this
name based on your naming convention you use in your application programming.

Basic Controls

VB.Net provides a huge variety of controls that help you to create rich user interface. Functionalities
of all these controls are defined in the respective control classes. The control classes are defined in
the System.Windows.Forms namespace.

The following table lists some of the commonly used controls −

Sr.No. Widget & Description

1
Forms

The container for all the controls that make up the user interface.

2
TextBox

It represents a Windows text box control.

3
Label

It represents a standard Windows label.

4
Button

It represents a Windows button control.

5
ListBox

It represents a Windows control to display a list of items.

6
ComboBox

It represents a Windows combo box control.

7
RadioButton

It enables the user to select a single option from a group of choices when paired with
other RadioButton controls.

8
CheckBox

It represents a Windows CheckBox.

9
PictureBox

https://www.tutorialspoint.com/vb.net/vb.net_forms.htm
https://www.tutorialspoint.com/vb.net/vb.net_textbox.htm
https://www.tutorialspoint.com/vb.net/vb.net_label.htm
https://www.tutorialspoint.com/vb.net/vb.net_button.htm
https://www.tutorialspoint.com/vb.net/vb.net_listbox.htm
https://www.tutorialspoint.com/vb.net/vb.net_combobox.htm
https://www.tutorialspoint.com/vb.net/vb.net_radio_button.htm
https://www.tutorialspoint.com/vb.net/vb.net_checkbox.htm
https://www.tutorialspoint.com/vb.net/vb.net_picturebox.htm

It represents a Windows picture box control for displaying an image.

10
ProgressBar

It represents a Windows progress bar control.

11
ScrollBar

It Implements the basic functionality of a scroll bar control.

12
DateTimePicker

It represents a Windows control that allows the user to select a date and a time and to
display the date and time with a specified format.

13
TreeView

It displays a hierarchical collection of labeled items, each represented by a TreeNode.

14
ListView

It represents a Windows list view control, which displays a collection of items that can be
displayed using one of four different views.

 DATA TYPES IN VB.NET

Data types refer to an extensive system used for declaring variables or functions of different types.
The type of a variable determines how much space it occupies in storage and how the bit pattern
stored is interpreted.

VB.Net provides a wide range of data types. The following table shows all the data types available −

Data Type Storage Allocation Value Range

https://www.tutorialspoint.com/vb.net/vb.net_progress_bar.htm
https://www.tutorialspoint.com/vb.net/vb.net_scrollbar.htm
https://www.tutorialspoint.com/vb.net/vb.net_date_time_picker.htm
https://www.tutorialspoint.com/vb.net/vb.net_treeview.htm
https://www.tutorialspoint.com/vb.net/vb.net_listview.htm

Boolean Depends on implementing platform True or False

Byte 1 byte 0 through 255 (unsigned)

Char 2 bytes 0 through 65535 (unsigned)

Date 8 bytes 0:00:00 (midnight) on January 1, 0001 through

11:59:59 PM on December 31, 9999

Decimal 16 bytes 0 through +/-

79,228,162,514,264,337,593,543,950,335 (+/-

7.9...E+28) with no decimal point; 0 through +/-

7.9228162514264337593543950335 with 28 places to

the right of the decimal

Double 8 bytes
-1.79769313486231570E+308 through -
4.94065645841246544E-324, for negative
values

4.94065645841246544E-324 through
1.79769313486231570E+308, for positive
values

Integer 4 bytes -2,147,483,648 through 2,147,483,647 (signed)

Long 8 bytes -9,223,372,036,854,775,808 through

9,223,372,036,854,775,807(signed)

Object
4 bytes on 32-bit platform

8 bytes on 64-bit platform

Any type can be stored in a variable of type Object

SByte 1 byte -128 through 127 (signed)

Short 2 bytes -32,768 through 32,767 (signed)

Single 4 bytes
-3.4028235E+38 through -1.401298E-45 for
negative values;

1.401298E-45 through 3.4028235E+38 for
positive values

String Depends on implementing platform 0 to approximately 2 billion Unicode characters

UInteger 4 bytes 0 through 4,294,967,295 (unsigned)

ULong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned)

User-Defined Depends on implementing platform Each member of the structure has a range determined

by its data type and independent of the ranges of the

other members

UShort 2 bytes 0 through 65,535 (unsigned)

Example

The following example demonstrates use of some of the types −

ModuleDataTypes

SubMain()

Dim b AsByte

Dim n AsInteger

Dim si AsSingle

Dim d AsDouble

Dim da AsDate

Dim c AsChar

Dim s AsString

Dim bl AsBoolean

 b =1

 n =1234567

 si =0.12345678901234566

 d =0.12345678901234566

 da =Today

 c ="U"c

 s ="Me"

IfScriptEngine="VB"Then

 bl =True

Else

 bl =False

EndIf

If bl Then

'the oath taking

 Console.Write(c & " and," & s & vbCrLf)

 Console.WriteLine("declaring on the day of: {0}", da)

 Console.WriteLine("We will learn VB.Net seriously")

 Console.WriteLine("Lets see what happens to the floating point

variables:")

 Console.WriteLine("The Single: {0}, The Double: {1}", si, d)

 End If

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result −

U and, Me

declaring on the day of: 12/4/2012 12:00:00 PM

We will learn VB.Net seriously

Lets see what happens to the floating point variables:

The Single:0.1234568, The Double: 0.123456789012346

The Type Conversion Functions in VB.Net

VB.Net provides the following in-line type conversion functions −

Sr.No. Functions & Description

1
CBool(expression)

Converts the expression to Boolean data type.

2
CByte(expression)

Converts the expression to Byte data type.

3
CChar(expression)

Converts the expression to Char data type.

4
CDate(expression)

Converts the expression to Date data type

5
CDbl(expression)

Converts the expression to Double data type.

6
CDec(expression)

Converts the expression to Decimal data type.

7
CInt(expression)

Converts the expression to Integer data type.

8
CLng(expression)

Converts the expression to Long data type.

9
CObj(expression)

Converts the expression to Object type.

10
CSByte(expression)

Converts the expression to SByte data type.

11
CShort(expression)

Converts the expression to Short data type.

12
CSng(expression)

Converts the expression to Single data type.

13
CStr(expression)

Converts the expression to String data type.

14
CUInt(expression)

Converts the expression to UInt data type.

15
CULng(expression)

Converts the expression to ULng data type.

16
CUShort(expression)

Converts the expression to UShort data type.

Example

The following example demonstrates some of these functions −

ModuleDataTypes

SubMain()

Dim n AsInteger

Dim da AsDate

Dim bl AsBoolean=True

 n =1234567

 da =Today

Console.WriteLine(bl)

Console.WriteLine(CSByte(bl))

Console.WriteLine(CStr(bl))

Console.WriteLine(CStr(da))

Console.WriteLine(CChar(CChar(CStr(n))))

Console.WriteLine(CChar(CStr(da)))

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

True

-1

True

12/4/2012

1

1

IDENTIFIERS

An identifier is a name used to identify a class, variable, function, or any other user-defined

item. The basic rules for naming classes in VB.Net are as follows −

 A name must begin with a letter that could be followed by a sequence of letters, digits (0

- 9) or underscore. The first character in an identifier cannot be a digit.

 It must not contain any embedded space or symbol like ? - +! @ # % ^ & * () [] { } . ; :

" ' / and \. However, an underscore (_) can be used.

 It should not be a reserved keyword.

VARIABLE

A variable is nothing but a name given to a storage area that our programs can manipulate. Each
variable in VB.Net has a specific type, which determines the size and layout of the variable's

memory; the range of values that can be stored within that memory; and the set of operations that
can be applied to the variable.

We have already discussed various data types. The basic value types provided in VB.Net can be
categorized as −

Type Example

Integral types SByte, Byte, Short, UShort, Integer, UInteger, Long, ULong and Char

Floating point types Single and Double

Decimal types Decimal

Boolean types True or False values, as assigned

Date types Date

VB.Net also allows defining other value types of variable like Enum and reference types of variables
like Class. We will discuss date types and Classes in subsequent chapters.

Variable Declaration in VB.Net

The Dim statement is used for variable declaration and storage allocation for one or more variables.
The Dim statement is used at module, class, structure, procedure or block level.

Syntax for variable declaration in VB.Net is −

[< attributelist >] [accessmodifier] [[Shared] [Shadows] | [Static]]

[ReadOnly] Dim [WithEvents] variablelist

Where,

 attributelist is a list of attributes that apply to the variable. Optional.

 accessmodifier defines the access levels of the variables, it has values as - Public,
Protected, Friend, Protected Friend and Private. Optional.

 Shared declares a shared variable, which is not associated with any specific instance of a
class or structure, rather available to all the instances of the class or structure. Optional.

 Shadows indicate that the variable re-declares and hides an identically named element, or set
of overloaded elements, in a base class. Optional.

 Static indicates that the variable will retain its value, even when the after termination of the
procedure in which it is declared. Optional.

 ReadOnly means the variable can be read, but not written. Optional.

 WithEvents specifies that the variable is used to respond to events raised by the instance
assigned to the variable. Optional.

 Variablelist provides the list of variables declared.

Each variable in the variable list has the following syntax and parts −

variablename[([boundslist])] [As [New] datatype] [= initializer]

Where,

 variablename − is the name of the variable

 boundslist − optional. It provides list of bounds of each dimension of an array variable.

 New − optional. It creates a new instance of the class when the Dim statement runs.

 datatype − Required if Option Strict is On. It specifies the data type of the variable.

 initializer − Optional if New is not specified. Expression that is evaluated and assigned to the
variable when it is created.

Some valid variable declarations along with their definition are shown here −

DimStudentIDAsInteger

DimStudentNameAsString

DimSalaryAsDouble

Dim count1, count2 AsInteger

Dim status AsBoolean

Dim exitButton AsNewSystem.Windows.Forms.Button

Dim lastTime, nextTime AsDate

Variable Initialization in VB.Net

Variables are initialized (assigned a value) with an equal sign followed by a constant expression. The
general form of initialization is −

variable_name = value;

for example,

Dim pi AsDouble

pi =3.14159

You can initialize a variable at the time of declaration as follows −

DimStudentIDAsInteger=100

DimStudentNameAsString="Bill Smith"

Example

Try the following example which makes use of various types of variables −

Module variablesNdataypes

SubMain()

Dim a AsShort

Dim b AsInteger

Dim c AsDouble

 a =10

 b =20

 c = a + b

Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

a = 10, b = 20, c = 30

Accepting Values from User

The Console class in the System namespace provides a function ReadLine for accepting input from
the user and store it into a variable. For example,

Dim message AsString

message =Console.ReadLine

The following example demonstrates it −

Module variablesNdataypes

SubMain()

Dim message AsString

Console.Write("Enter message: ")

 message =Console.ReadLine

Console.WriteLine()

Console.WriteLine("Your Message: {0}", message)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result (assume the user
inputs Hello World) −

Enter message: Hello World

Your Message: Hello World

CONSTANTS

The constants refer to fixed values that the program may not alter during its execution. These fixed
values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant, a
character constant, or a string literal. There are also enumeration constants as well.

The constants are treated just like regular variables except that their values cannot be modified after
their definition.

An enumeration is a set of named integer constants.

Declaring Constants

In VB.Net, constants are declared using the Const statement. The Const statement is used at
module, class, structure, procedure, or block level for use in place of literal values.

The syntax for the Const statement is −

[< attributelist >] [accessmodifier] [Shadows]

Const constantlist

Where,

 attributelist − specifies the list of attributes applied to the constants; you can provide multiple
attributes separated by commas. Optional.

 accessmodifier − specifies which code can access these constants. Optional. Values can be
either of the: Public, Protected, Friend, Protected Friend, or Private.

 Shadows − this makes the constant hide a programming element of identical name in a base
class. Optional.

 Constantlist − gives the list of names of constants declared. Required.

Where, each constant name has the following syntax and parts −

constantname [As datatype] = initializer

 constantname − specifies the name of the constant

 datatype − specifies the data type of the constant

 initializer − specifies the value assigned to the constant

For example,

'The following statements declare constants.'

Const maxval AsLong=4999

PublicConst message AsString="HELLO"

PrivateConst piValue AsDouble=3.1415

Example

The following example demonstrates declaration and use of a constant value −

Module constantsNenum

SubMain()

Const PI =3.14149

Dim radius, area AsSingle

 radius =7

 area = PI * radius * radius

Console.WriteLine("Area = "&Str(area))

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Area = 153.933

Print and Display Constants in VB.Net

VB.Net provides the following print and display constants −

Sr.No. Constant & Description

1
vbCrLf

Carriage return/linefeed character combination.

2
vbCr

Carriage return character.

3
vbLf

Linefeed character.

4
vbNewLine

Newline character.

5
vbNullChar

Null character.

6
vbNullString

Not the same as a zero-length string (""); used for calling external procedures.

7
vbObjectError

Error number. User-defined error numbers should be greater than this value. For
example: Err.Raise(Number) = vbObjectError + 1000

8
vbTab

Tab character.

9
vbBack

Backspace character.

Declaring Enumerations

An enumerated type is declared using the Enum statement. The Enum statement declares an
enumeration and defines the values of its members. The Enum statement can be used at the
module, class, structure, procedure, or block level.

The syntax for the Enum statement is as follows −

[< attributelist >] [accessmodifier] [Shadows]

Enum enumerationname [As datatype]

 memberlist

End Enum

Where,

 attributelist − refers to the list of attributes applied to the variable. Optional.

 accessmodifier − specifies which code can access these enumerations. Optional. Values can
be either of the: Public, Protected, Friend or Private.

 Shadows − this makes the enumeration hide a programming element of identical name in a
base class. Optional.

 enumerationname − name of the enumeration. Required

 datatype − specifies the data type of the enumeration and all its members.

 memberlist − specifies the list of member constants being declared in this statement.
Required.

Each member in the memberlist has the following syntax and parts:

[< attribute list >] member name [= initializer]

Where,

 name − specifies the name of the member. Required.

 initializer − value assigned to the enumeration member. Optional.

For example,

EnumColors

 red =1

 orange =2

 yellow =3

 green =4

 azure =5

 blue =6

 violet =7

EndEnum

Example

The following example demonstrates declaration and use of the Enum variable Colors −

Module constantsNenum

EnumColors

 red =1

 orange =2

 yellow =3

 green =4

 azure =5

 blue =6

 violet =7

EndEnum

SubMain()

Console.WriteLine("The Color Red is : "&Colors.red)

Console.WriteLine("The Color Yellow is : "&Colors.yellow)

Console.WriteLine("The Color Blue is : "&Colors.blue)

Console.WriteLine("The Color Green is : "&Colors.green)

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

The Color Red is: 1

The Color Yellow is: 3

The Color Blue is: 6

The Color Green is: 4

VALUE TYPE

A data type is a value type if it holds the data within its own memory allocation. Value types are
stored directly on the stack. Value types can not contain the value null. We assign a value to that
variable like this: x=11. When a variable of value type goes out of scope, it is destroyed and it's
memory is reclaimed.

Value types include the following:

 All numeric data types
 Boolean, Char, and Date
 All structures, even if their members are reference types
 Enumerations, since their underlying type is always SByte, Short, Integer, Long, Byte, UShort,

UInteger, or ULong

For example

The following code defines an int type variable. int type is a value type.

Module Module1
 Sub Main()
 Dim m As Integer = 5
 Dim n As Integer = m
 m = 3
 Console.WriteLine("m=" & m)
 Console.WriteLine("n=" & n)
 End Sub
End Module

REFERENCE TYPE

A reference type contains a pointer to another memory location that holds the data.while Reference
types are stored on the run-time heap. Value types can contain the value null. Creating a variable of
reference type is a two-step process, declare and instantiate. The first step is to declare a variable as
that type. The second step, instantiation, creates the object.

Reference types include the following:

 String
 All arrays, even if their elements are value types
 Class types, such as Form
 Delegates

For Example

Module Module1
 Sub Main()
 Dim objX As New System.Text.StringBuilder(" Rohatash Kumasr")
 Dim objY As System.Text.StringBuilder
 objY = objX

 objX.Replace("World", "Test")

 Console.WriteLine(objY.ToString())
 End Sub
End Module

Difference

Value type Data types Reference type Data types

1) Whenever a data type is derived from
structure then it is said to be value type data
type.

1) Whenever a data type is derived from a
class definition then it is said to be value
type data type.

2) The variable information and the value
will be maintained at the stack memory.
Ex: public I as integer = 10I [10] s to 3 stack
memory

2) The variable information will be
maintained at the stack memory and value
will be maintained at heap memory
.Ex: public S as string = VB.NetS[H10T]
5105stack memory ----> [vbrowser] H107
heap memory

3) Inheritance is not supported 3) Inheritance is supported.

4) Default values will be assignedEx: integer
à 0Boolean à false

4) Default value for any reference type
member type member will be null value.

5) value type data types are bytes, s bytes,
integer, u integer, short, u short, long,
double, decimal, Boolean, char, date time,
enum & structure etc.

5) Reference type data types are string,
object, interface, delegate and class.

Boxing & Unboxing

 Boxing and unboxing is an important concept in VB.NET's type system. With Boxing and
Unboxing one can link between value-types and reference-types by allowing any value of a value-
type to be converted to and from type object.

Boxing

 Boxing is a mechanism in which value type is converted into reference type.
 It is implicit conversion process in which object type (super type) is used.
 In this process type and value both are stored in object type

Unboxing

 Unboxing is a mechanism in which reference type is converted into value.
 It is explicit conversion process.

Program to show Boxing and Unboxing:

Module Module1
 Sub Main()
 Dim i As Integer = 10
 Dim j As Integer ' boxing
 Dim o As Object
 o = i 'unboxing
 j = CInt(o)
 Console.WriteLine("value of o object : " & o)
 Console.WriteLine("Value of j : " & j)
 Console.ReadLine()
 End Sub
End Module

MODIFIERS

The modifiers are keywords added with any programming element to give some especial
emphasis on how the programming element will behave or will be accessed in the program.

For example, the access modifiers: Public, Private, Protected, Friend, Protected Friend, etc., indicate
the access level of a programming element like a variable, constant, enumeration or a class.

List of Available Modifiers in VB.Net

The following table provides the complete list of VB.Net modifiers −

Sr.No Modifier Description

1 Ansi Specifies that Visual Basic should marshal all strings to American
National Standards Institute (ANSI) values regardless of the name
of the external procedure being declared.

2 Assembly Specifies that an attribute at the beginning of a source file applies
to the entire assembly.

3 Async Indicates that the method or lambda expression that it modifies is
asynchronous. Such methods are referred to as async methods.
The caller of an async method can resume its work without waiting
for the async method to finish.

4 Auto The charsetmodifier part in the Declare statement supplies the
character set information for marshaling strings during a call to the
external procedure. It also affects how Visual Basic searches the
external file for the external procedure name. The Auto modifier
specifies that Visual Basic should marshal strings according to
.NET Framework rules.

5 ByRef Specifies that an argument is passed by reference, i.e., the called
procedure can change the value of a variable underlying the
argument in the calling code. It is used under the contexts of −

 Declare Statement

 Function Statement

 Sub Statement

6 ByVal Specifies that an argument is passed in such a way that the called
procedure or property cannot change the value of a variable

underlying the argument in the calling code. It is used under the
contexts of −

 Declare Statement

 Function Statement

 Operator Statement

 Property Statement

 Sub Statement

7 Default Identifies a property as the default property of its class, structure, or
interface.

8 Friend
Specifies that one or more declared programming elements are
accessible from within the assembly that contains their declaration,
not only by the component that declares them.

Friend access is often the preferred level for an application's
programming elements, and Friend is the default access level of
an interface, a module, a class, or a structure.

9 In It is used in generic interfaces and delegates.

10 Iterator Specifies that a function or Get accessor is an iterator. An iterator
performs a custom iteration over a collection.

11 Key The Key keyword enables you to specify behavior for properties of
anonymous types.

12 Module Specifies that an attribute at the beginning of a source file applies
to the current assembly module. It is not same as the Module
statement.

13 MustInherit Specifies that a class can be used only as a base class and that
you cannot create an object directly from it.

14 MustOverride Specifies that a property or procedure is not implemented in this
class and must be overridden in a derived class before it can be
used.

15 Narrowing Indicates that a conversion operator (CType) converts a class or
structure to a type that might not be able to hold some of the
possible values of the original class or structure.

16 NotInheritable Specifies that a class cannot be used as a base class.

17 NotOverridable Specifies that a property or procedure cannot be overridden in a
derived class.

18 Optional Specifies that a procedure argument can be omitted when the
procedure is called.

19 Out For generic type parameters, the Out keyword specifies that the
type is covariant.

20 Overloads Specifies that a property or procedure redeclares one or more
existing properties or procedures with the same name.

21 Overridable Specifies that a property or procedure can be overridden by an
identically named property or procedure in a derived class.

22 Overrides Specifies that a property or procedure overrides an identically
named property or procedure inherited from a base class.

23 ParamArray ParamArray allows you to pass an arbitrary number of arguments to
the procedure. A ParamArray parameter is always declared using
ByVal.

24 Partial Indicates that a class or structure declaration is a partial definition
of the class or structure.

25 Private Specifies that one or more declared programming elements are
accessible only from within their declaration context, including from
within any contained types.

26 Protected Specifies that one or more declared programming elements are
accessible only from within their own class or from a derived class.

27 Public Specifies that one or more declared programming elements have
no access restrictions.

28 ReadOnly Specifies that a variable or property can be read but not written.

29 Shadows Specifies that a declared programming element redeclares and
hides an identically named element, or set of overloaded elements,
in a base class.

30 Shared Specifies that one or more declared programming elements are
associated with a class or structure at large, and not with a specific
instance of the class or structure.

31 Static Specifies that one or more declared local variables are to continue
to exist and retain their latest values after termination of the
procedure in which they are declared.

32 Unicode Specifies that Visual Basic should marshal all strings to Unicode
values regardless of the name of the external procedure being
declared.

STATEMENT

A statement is a complete instruction in Visual Basic programs. It may contain keywords, operators,
variables, literal values, constants and expressions.

Statements could be categorized as −

 Declaration statements − these are the statements where you name a variable, constant, or
procedure, and can also specify a data type.

 Executable statements − these are the statements, which initiate actions. These statements
can call a method or function, loop or branch through blocks of code or assign values or
expression to a variable or constant. In the last case, it is called an Assignment statement.

Declaration Statements

The declaration statements are used to name and define procedures, variables, properties, arrays,
and constants. When you declare a programming element, you can also define its data type, access
level, and scope.

The programming elements you may declare include variables, constants, enumerations, classes,
structures, modules, interfaces, procedures, procedure parameters, function returns, external
procedure references, operators, properties, events, and delegates.

Following are the declaration statements in VB.Net −

Sr.No Statements and Description Example

1
Dim Statement

Declares and allocates storage space for one or
more variables.

Dim number AsInteger

Dim quantity AsInteger=100

Dim message AsString="Hello!"

2
Const Statement

Declares and defines one or more constants.

Const maximum AsLong=1000

Const naturalLogBase AsObject

=CDec(2.7182818284)

3
Enum Statement

Declares an enumeration and defines the values
of its members.

EnumCoffeeMugSize

Jumbo

ExtraLarge

Large

Medium

Small

EndEnum

4
Class Statement

Declares the name of a class and introduces the
definition of the variables, properties, events, and
procedures that the class comprises.

ClassBox

Public length AsDouble

Public breadth AsDouble

Public height AsDouble

EndClass

5
Structure Statement

Declares the name of a structure and introduces
the definition of the variables, properties, events,
and procedures that the structure comprises.

StructureBox

Public length AsDouble

Public breadth AsDouble

Public height AsDouble

EndStructure

6
Module Statement

Declares the name of a module and introduces
the definition of the variables, properties, events,
and procedures that the module comprises.

PublicModule myModule

SubMain()

Dim user AsString=

InputBox("What is your

name?")

MsgBox("User name is"& user)

EndSub

EndModule

7
Interface Statement

Declares the name of an interface and introduces
the definitions of the members that the interface
comprises.

PublicInterfaceMyInterface

Sub doSomething()

EndInterface

8
Function Statement

Declares the name, parameters, and code that
define a Function procedure.

Function myFunction

(ByVal n AsInteger)AsDouble

Return5.87* n

EndFunction

9
Sub Statement

Declares the name, parameters, and code that
define a Sub procedure.

Sub mySub(ByVal s AsString)

Return

EndSub

10
Declare Statement

Declares a reference to a procedure
implemented in an external file.

DeclareFunction getUserName

Lib"advapi32.dll"

Alias"GetUserNameA"

(

ByVal lpBuffer AsString,

ByRef nSize

AsInteger)AsInteger

11
Operator Statement

Declares the operator symbol, operands, and
code that define an operator procedure on a
class or structure.

PublicSharedOperator+

(ByVal x As obj,ByVal y As

obj)As obj

Dim r AsNew obj

' implemention code for r = x

+ y

 Return r

End Operator

12
Property Statement

Declares the name of a property, and the
property procedures used to store and retrieve
the value of the property.

ReadOnlyProperty

quote()AsString

Get

Return quoteString

EndGet

EndProperty

13
Event Statement

Declares a user-defined event.

PublicEventFinished()

14
Delegate Statement

Used to declare a delegate.

DelegateFunctionMathOperator(

ByVal x AsDouble,

ByVal y AsDouble

)AsDouble

Executable Statements

An executable statement performs an action. Statements calling a procedure, branching to another
place in the code, looping through several statements, or evaluating an expression are executable
statements. An assignment statement is a special case of an executable statement.

Example

The following example demonstrates a decision making statement –

Module decisions

SubMain()

'local variable definition '

Dim a AsInteger=10

' check the boolean condition using if statement '

If(a <20)Then

' if condition is true then print the following '

Console.WriteLine("a is less than 20")

EndIf

Console.WriteLine("value of a is : {0}", a)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

a is less than 20;

value of a is : 10

COMBOBOX CONTROL

The combobox control helps you to display a drop-down list with many items. See it as a combination
of a textbox in which a user enters text and a dropdown list from which a user selects an item. Note
that the combobox shows one item at a time.

Creating a Combobox

A ComboBox can be created as follows:

Step 1) Create a new Application.

Step 2) Drag a combobox control from the toolbox to the form.

You will have created a combobox control.

Adding Items to Combobox

Now that we have created a combobox, let us demonstrate how to add items to it.

Double click the combobox control that you have added. You will be moved from the design tab to the
tab with code.

To add an item to a combobox control, we use the Items property. Let us demonstrate this by adding
two items to the combobox, Male and Female:

ComboBox1.Items.Add("Male")

ComboBox1.Items.Add("Female")

https://www.guru99.com/images/1/052919_0533_VBNetComboB1.png

We can also choose to add items to the combobox at design time from the Properties window. Here
are the steps:

Step 1) Open the design tab and click the combobox control.

Step 2) Move to the Properties window and view the Items option.

Step 3) Click the … located to the right of (Collection).

Step 4)You will see a new window. This is where you should add items to the combobox, as shown
below:

Step 5) Once done with typing the items, click the OK button.

Step 6) Click the Start button from the top toolbar and click the dropdown icon on the combobox.

https://www.guru99.com/images/1/052919_0533_VBNetComboB2.png
https://www.guru99.com/images/1/052919_0533_VBNetComboB3.png

The items were successfully added to the combobox control.

Selecting Combobox Items

You may need to set the default item that will be selected when the form is loaded. You can achieve
this via the SelectedItem() method. For example, to set the default selected gender to Male, you can
use the following statement:

ComboBox1.SelectedItem = "Male"

When you run the code, the combobox control should be as shown below:

Retrieving Combobox Values

https://www.guru99.com/images/1/052919_0533_VBNetComboB4.png
https://www.guru99.com/images/1/052919_0533_VBNetComboB5.png

You can get the selected item from your combobox. This can be done using the text property. Let us
demonstrate this using our above combobox with two items that is, Male and Female. Follow the
steps given below:

Step 1) Double click the combobox to open the tab with VB.NET code.

Step 2) Add the following code:

Public Class Form1

 Private Sub ComboBox1_SelectedIndexChanged(sd As Object, evnt As EventArgs) Handles

ComboBox1.SelectedIndexChanged

 Dim var_gender As String

 var_gender = ComboBox1.Text

 MessageBox.Show(var_gender)

 End Sub

End Class

Step 3) Click the Start button from the toolbar to execute the code. You should get the following form:

Step 4) Click the dropdown button and choose your gender. In my case. I choose Male, and I get the
following:

https://www.guru99.com/images/1/052919_0533_VBNetComboB6.png

Here is a screenshot of the code:

Explanation of Code:

1. Creating a class named Form1. The class will be publicly accessible since its access modifier
has been set to Public.

2. Starting of a sub-procedure named ComboBox1_SelectedIndexChanged. This is generated
automatically when you double click the combobox control from the design tab. This sub-
procedure will be invoked when you select an item from the combobox. The sd As Object
references the object that raised the event while the event As EventArgs has the event data s.

3. Creating a string integer named var_gender.
4. Setting the value of variable var_gender to the item that is selected on the combobox.
5. Printing the value of the variable var_gender on a MesageBox.
6. End of the ComboBox1_SelectedIndexChanged sub-procedure.
7. End of the Form1 class.

Removing Combobox Items

https://www.guru99.com/images/1/052919_0533_VBNetComboB7.png
https://www.guru99.com/images/1/052919_0533_VBNetComboB8.png

It is possible for you to remove an item from your combobox. There are two ways through which you
can accomplish this. You can use either the item index or the name of the item.

When using the item index, you should use the Items.RemoveAt() property as shown below:

ComboBox1.Items.RemoveAt(1)

In the above example, we are removing the item located at index 1 of the combobox. Note that
combobox indexes begin at index 0, meaning that the above command will remove the second item
of the combobox.

To remove the item using its name, you should use the Items.Remove() property as shown below:

ComboBox1.Items.Remove("Female")

The above code should remove the item named Female from the ComboBox1.

Binding DataSource

A ComboBox can be populated from a Dataset. Consider the SQL Query given below:

select emp_id, emp_name from employees;

You can create a datasource in a program then use the following code to bind it:

comboBox1.DataSource = ds.Tables(0)

comboBox1.ValueMember = "emp_id"

comboBox1.DisplayMember = "emp_name"

This will provide you with an easy way of populating your combobox control with data without having
to type each individual item.

SelectedIndexChanged event

This type of event is invoked when you change the selected item on your combobox. It is the event
you should use when you need to implement an action upon a change on the selected item of a
combobox. Let us demonstrate this by use of an example:

Step 1) Create a new Window Forms Application.

Step 2) After that you need to Drag and drop two combobox controls into the form.

Step 3) Double click inside the form to open the tab for code. Enter the following code:

Public Class Form1

 Private Sub Form1_Load(sd As Object, evnt As EventArgs) Handles MyBase.Load

 ComboBox1.Items.Add("Males")

 ComboBox1.Items.Add("Females")

 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(sender As Object, e As EventArgs) Handles

ComboBox1.SelectedIndexChanged

 ComboBox2.Items.Clear()

 If ComboBox1.SelectedItem = "Males" Then

 ComboBox2.Items.Add("Nicholas")

 ComboBox2.Items.Add("John")

 ElseIf ComboBox1.SelectedItem = "Females" Then

 ComboBox2.Items.Add("Alice")

 ComboBox2.Items.Add("Grace")

 End If

 End Sub

https://www.guru99.com/images/1/052919_0533_VBNetComboB9.png

End Class

Step 4) Click the Start button from the top bar to run the code. You should get the following output:

Step 5) Click the dropdown button on the first combobox and choose Male. Move the mouse cursor
to the second combobox and click its dropdown button. See the available items:

Step 6) Move to the first combobox and choose Female. Move to the second combobox and see the
available items:

https://www.guru99.com/images/1/052919_0533_VBNetComboB10.png
https://www.guru99.com/images/1/052919_0533_VBNetComboB11.png

Here is a screenshot of the code:

Explanation of Code:

https://www.guru99.com/images/1/052919_0533_VBNetComboB12.png
https://www.guru99.com/images/1/052919_0533_VBNetComboB13.png

1. Creating a class named Form1.
2. Start of a sub-procedure named Form1_Load(). This will be triggered once the form is loaded.

The sd As Object references the object that raised the event while the system As EventArgs
has the event data.

3. Adding the item Males to the ComboBox1.
4. Adding the item Females to the ComboBox1.
5. End of the Form1_Load() sub-procedure.
6. Start of a sub-procedure named ComboBox1_SelectedIndexChanged(). This will be invoked

when an item is selected on the first combobox. The sender As Object references the object
that raised the event while the e As EventArgs has the event data.

7. Make ComboBox2 empty, clear all items from it.
8. Creating a condition. Checking for whether the selected item on ComboBox1 is Males.
9. Add the item Nicholas to the ComboBox2 when the above condition is true, that is, item

selected on ComboBox1 is Male.
10. Add the item John to the ComboBox2 when the above condition is true, that is, item selected

on ComboBox1 is Males.
11. Creating a condition. Checking for whether the selected item on ComboBox1 is Females.
12. Add the item Alice to the ComboBox2 when the above condition is true, that is, item selected

on ComboBox1 is Females.
13. Add the item Grace to the ComboBox2 when the above condition is true, that is, item selected

on ComboBox1 is Females.
14. End of the If block.
15. End of the ComboBox1_SelectedIndexChanged() sub-procedure.
16. End of the class Form1.

Summary

 A ComboBox is created by dragging it from the toolbox and dropping it into the form.
 It provides us with a way of presenting numerous options to the user.
 We can set the default item to be selected on the ComboBox when the form is loaded.
 The SelectedIndexChanged event helps us specify the action to take when a particular item is

selected on the combobox.

TEXTBOX CONTROL

The TextBox Control allows you to enter text on your form during runtime. The default setting
is that it will accept only one line of text, but you can modify it to accept multiple lines. You can even
include scroll bars into your TextBox Control.

In this tutorial, you will learn

 What is TextBox Control?
 TextBox Properties
 Textbox Events
 How to Create a TextBox
 Password character
 Newline in TextBox
 Retrieving Integer Values
 ReadOnly TextBox
 max length

TextBox Properties

The following are the most common properties of the Visual Basic TextBox control:

 TextAlign- for setting text alignment
 ScrollBars- for adding scrollbars, both vertical and horizontal
 Multiline- to set the TextBox Control to allow multiple lines
 MaxLength- for specifying the maximum character number the TextBox Control will accept
 Index- for specifying the index of control array
 Enabled- for enabling the textbox control
 Readonly- if set to true, you will be able to use the TextBox Control, if set to false, you won't

be able to use the TextBox Control.
 SelectionStart- for setting or getting the starting point for the TextBox Control.
 SelectionLength- for setting or getting the number of characters that have been selected in

the TextBox Control.
 SelectedText- returns the TextBox Control that is currently selected.

Textbox Events

The purpose of events is to make the TextBox Control respond to user actions such as a click, a
double click or change in text alignment. Here are the common events for the TextBox Control:

 AutoSizeChanged- Triggered by a change in the AutoSize property.
 ReadOnlyChanged- Triggered by a change of the ReadOnly property value.
 Click- Triggered by a click on the TextBox Control.

How to Create a TextBox

https://www.guru99.com/vb-net-textbox.html#1
https://www.guru99.com/vb-net-textbox.html#2
https://www.guru99.com/vb-net-textbox.html#3
https://www.guru99.com/vb-net-textbox.html#4
https://www.guru99.com/vb-net-textbox.html#5
https://www.guru99.com/vb-net-textbox.html#6
https://www.guru99.com/vb-net-textbox.html#7
https://www.guru99.com/vb-net-textbox.html#8
https://www.guru99.com/vb-net-textbox.html#9

Step 1) To create a TextBox, drag the TextBox control from the toolbox into the WindowForm:

Step 2)

1. Click the TextBox Control that you have added to the form.
2. Move to the Properties section located on the bottom left of the screen. Change the name of

the text box from TextBox1 to HelloTextBox:

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO1.png

Step 3) Add the following code to add text to the control:

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 'Add text to the control

 HelloTextBox.Text = "Hello. Welcome to Guru99!"

 End Sub

Step 4) You can now run the code by clicking the Start button located at the top bar:

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO2.png

Step 5) You should get the following form:

Here is a screenshot of the complete code for the above:

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO3.png
https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO4.png

Explanation of code:

1. Creating a public class named Form1
2. Creating a sub procedure named Form1_Load. It will be called when the form is loaded.
3. A comment. The VB.net compiler will skip this.
4. End the subprocedure
5. End the class.

Password character

Sometimes, you want a text box to be used for typing a password. This means that whatever is typed
into that text box to remain confidential. This is possible with VB.net. It can be done using
the PasswordChar property which allows us to use any character that you want. Let us demonstrate
this using an example:

Begin by creating a new project. Drag two TextBox Controls, two Labels, and one Button into the
form. Change the texts on the two labels and the button to the following:

Click the text box next to Username label, move to the Properties section located at the bottom left of
the window. Give it the name UsernameField.

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO5.png
https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO6.png

Do the same for the TextBox Control next to Password label, giving it the name PasswordField.

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO7.png

You should now make the PasswordField TextBox Control show * for each character typed in it. Add
the following code:

Private Sub PasswordField_TextChanged(sender As Object, e As EventArgs) Handles

PasswordField.TextChanged

 PasswordField.PasswordChar = "*"

End Sub

Now, run the code by clicking the Start button. A form will popup.

Type the username and the password and observe what happens. You should see the following:

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO8.png

The username is shown, but the password has been hidden. Here is the code for the above:

Explanation of code:

1. Creating a class named Form1.
2. Creating a sub-procedure named PasswordField_textchanged(). It will be called when the form

is loaded.
3. Using the PasswordChar property to show * as a user types the password.
4. Ending the sub-procedure.
5. Ending the class.

Newline in TextBox

By default, you can only create one line of text in a text box. There are two ways through which we
can achieve this. Let us discuss them.

Drag and drop a TextBox Control to your form. Give the control the name GuruWelcome.

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO9.png
https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO10.png

Click the text box control again and move the mouse cursor to the Properties section. Change the
value of Multiline property to True.

Alternative, you can set the Multiline property to true in your code as follows:

GuruWelcome.Multiline = True

Add the following code:

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO11.png
https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO12.png

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 GuruWelcome.Multiline = True

 GuruWelcome.Text = "Line 1"

 GuruWelcome.Text = GuruWelcome.Text & ControlChars.NewLine & "Line 2"

 End Sub

Upon execution, the two lines of text will be separated.

Explanation of Code:

1. Creating a class named Form1
2. Creating a sub-routine named Form1_Load()
3. Setting the Multiline property to True. The textbox will be able to take more than one lines.
4. Adding the first line of text to the text box.
5. Adding the second line of text to the text box. The Controlchars.NewLine property helps us to

split the two lines.
6. Ending the sub-routine.
7. Ending the class.
8.

Retrieving Integer Values

VB.net treats everything as a string. This means that you read an integer from the text box as a
string, then you convert it into an integer. This is normally done using the Integer.Parse() method.

To demonstrate this, create a new text box control plus a button. Give the text box the name age.
Give the button the name Button1. You should have the following interface:

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO13.png

Add the following code:

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim x As Integer

 x = Integer.Parse(age.Text)

 MessageBox.Show(x)

Run the code, and enter your age into the text box. Click the Show Age button. You should see the
following:

The value you enter is returned in a MessageBox.

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO14.png
https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO15.png

Explanation of Code:

1. Creating a class named Form1.
2. Creating a sub-procedure named Button1_Click. It will be called when the button is clicked.
3. Defining an integer variable named x.
4. Converting the value read from the textbox named age into an integer.
5. Displaying the value converted in the above step in a MessageBox.
6. Ending the sub-procedure.
7. Ending the class.

max length

The MaxLength property can help you set the maximum number of words or characters that the
textbox will allow. To demonstrate this, create a TextBox control and give it the name fullName. Add
the following code:

Private Sub fullName_TextChanged(sender As Object, e As EventArgs) Handles

fullName.TextChanged

 fullName.MaxLength = 8

 End Sub

Run the code and try to type your full name. You will not be able to type more than 8 characters, with
whitespace included:

The code:

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO16.png
https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO19.png

Code Explanation:

1. Creating a class named Form1.
2. Creating a sub-procedure named fullName_TextChanged.
3. Making the fullName textbox accept a maximum of only 8 characters.
4. Ending the sub-procedure.
5. Ending the class.

Summary:

 The TextBox Control allows you to enter text into your form during runtime. It is good for
getting input from users.

 The default setting is that the TextBox Control will only accept one line of text. However, it is
possible for you to change this.

 You can hide what the user types into the TextBox, especially when you need to capture
passwords.

 You can also set the maximum number of characters that you need to be entered into the
TextBox.

 You can make your TextBox un-editable, meaning that the users won't be able to change the
text displayed on it.

DECISION MAKING STRUCTURES

Decision making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the condition is
determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages −

https://www.guru99.com/images/1/042319_0438_VBNetTEXTBO20.png

VB.Net provides the following types of decision making statements. Click the following links to check
their details.

Statement Description

If ... Then statement An If...Then statement consists of a boolean expression
followed by one or more statements.

If...Then...Else statement An If...Then statement can be followed by an optional Else
statement, which executes when the boolean expression is
false.

nested If statements

You can use one If or Else if statement inside another If or Else
if statement(s).

Select Case statement A Select Case statement allows a variable to be tested for
equality against a list of values.

nested Select Case statements You can use one select case statement inside another select
case statement(s).

https://www.tutorialspoint.com/vb.net/vb.net_if_statements.htm
https://www.tutorialspoint.com/vb.net/vb.net_if_else_statements.htm
https://www.tutorialspoint.com/vb.net/vb.net_nested_if_statements.htm
https://www.tutorialspoint.com/vb.net/vb.net_select_case_statements.htm
https://www.tutorialspoint.com/vb.net/vb.net_nested_select_case_statements.htm

There may be a situation when you need to execute a block of code several number of times. In
general, statements are executed sequentially: The first statement in a function is executed first,
followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated execution
paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general form of a loop statement in most of the programming languages −

VB.Net provides following types of loops to handle looping requirements. Click the following links to
check their details.

Loop Type Description

Do Loop It repeats the enclosed block of statements while a Boolean condition
is True or until the condition becomes True. It could be terminated at
any time with the Exit Do statement.

For...Next It repeats a group of statements a specified number of times and a
loop index counts the number of loop iterations as the loop executes.

For Each...Next

It repeats a group of statements for each element in a collection. This loop is

used for accessing and manipulating all elements in an array or a VB.Net

collection.

While... End While It executes a series of statements as long as a given condition is
True.

With... End With It is not exactly a looping construct. It executes a series of statements
that repeatedly refer to a single object or structure.

Nested loops You can use one or more loops inside any another While, For or Do
loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

https://www.tutorialspoint.com/vb.net/vb.net_do_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_fornext_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_foreachnext_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_while_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_with_statement.htm
https://www.tutorialspoint.com/vb.net/vb.net_nested_loops.htm

VB.Net provides the following control statements. Click the following links to check their details.

Control Statement Description

Exit statement Terminates the loop or select case statement and transfers
execution to the statement immediately following the loop or select
case.

Continue statement Causes the loop to skip the remainder of its body and immediately
retest its condition prior to reiterating.

GoTo statement Transfers control to the labeled statement. Though it is not advised to
use GoTo statement in your program.

STRING

In VB.Net, you can use strings as array of characters, however, more common practice is to use the
String keyword to declare a string variable. The string keyword is an alias for
the System.String class.

Creating a String Object

You can create string object using one of the following methods −

 By assigning a string literal to a String variable

 By using a String class constructor

 By using the string concatenation operator (+)

 By retrieving a property or calling a method that returns a string

 By calling a formatting method to convert a value or object to its string representation

The following example demonstrates this –

Module strings

SubMain()

Dim fname, lname, fullname, greetings AsString

 fname ="Rowan"

 lname ="Atkinson"

 fullname = fname +" "+ lname

Console.WriteLine("Full Name: {0}", fullname)

https://www.tutorialspoint.com/vb.net/vb.net_exit_statement.htm
https://www.tutorialspoint.com/vb.net/vb.net_continue_statement.htm
https://www.tutorialspoint.com/vb.net/vb.net_goto_statement.htm

'by using string constructor

 Dim letters As Char() = {"H", "e", "l", "l", "o"}

 greetings = New String(letters)

 Console.WriteLine("Greetings: {0}", greetings)

 'methods returning String

Dim sarray()AsString={"Hello","From","Tutorials","Point"}

Dim message AsString=String.Join(" ", sarray)

Console.WriteLine("Message: {0}", message)

'formatting method to convert a value

 Dim waiting As DateTime = New DateTime(2012, 12, 12, 17, 58, 1)

 Dim chat As String = String.Format("Message sent at {0:t} on {0:D}",

waiting)

 Console.WriteLine("Message: {0}", chat)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result −

Full Name: Rowan Atkinson

Greetings: Hello

Message: Hello From Tutorials Point

Message: Message sent at 5:58 PM on Wednesday, December 12, 2012

Properties of the String Class

The String class has the following two properties −

Sr.No Property Name & Description

1
Chars

Gets the Char object at a specified position in the current String object.

2
Length

Gets the number of characters in the current String object.

Methods of the String Class

The String class has numerous methods that help you in working with the string objects. The
following table provides some of the most commonly used methods −

Sr.No Method Name & Description

1
Public Shared Function Compare (strA As String, strB As String) As Integer

Compares two specified string objects and returns an integer that indicates their relative
position in the sort order.

2
Public Shared Function Compare (strA As String, strB As String, ignoreCase As
Boolean) As Integer

Compares two specified string objects and returns an integer that indicates their relative
position in the sort order. However, it ignores case if the Boolean parameter is true.

3
Public Shared Function Concat (str0 As String, str1 As String) As String

Concatenates two string objects.

4
Public Shared Function Concat (str0 As String, str1 As String, str2 As String) As
String

Concatenates three string objects.

5
Public Shared Function Concat (str0 As String, str1 As String, str2 As String, str3
As String) As String

Concatenates four string objects.

6
Public Function Contains (value As String) As Boolean

Returns a value indicating whether the specified string object occurs within this string.

7
Public Shared Function Copy (str As String) As String

Creates a new String object with the same value as the specified string.

8
pPublic Sub CopyTo (sourceIndex As Integer, destination As Char(),
destinationIndex As Integer, count As Integer)

Copies a specified number of characters from a specified position of the string object to a
specified position in an array of Unicode characters.

9
Public Function EndsWith (value As String) As Boolean

Determines whether the end of the string object matches the specified string.

10
Public Function Equals (value As String) As Boolean

Determines whether the current string object and the specified string object have the
same value.

11
Public Shared Function Equals (a As String, b As String) As Boolean

Determines whether two specified string objects have the same value.

12
Public Shared Function Format (format As String, arg0 As Object) As String

Replaces one or more format items in a specified string with the string representation of a
specified object.

13
Public Function IndexOf (value As Char) As Integer

Returns the zero-based index of the first occurrence of the specified Unicode character in
the current string.

14
Public Function IndexOf (value As String) As Integer

Returns the zero-based index of the first occurrence of the specified string in this
instance.

15
Public Function IndexOf (value As Char, startIndex As Integer) As Integer

Returns the zero-based index of the first occurrence of the specified Unicode character in
this string, starting search at the specified character position.

16
Public Function IndexOf (value As String, startIndex As Integer) As Integer

Returns the zero-based index of the first occurrence of the specified string in this
instance, starting search at the specified character position.

17
Public Function IndexOfAny (anyOf As Char()) As Integer

Returns the zero-based index of the first occurrence in this instance of any character in a
specified array of Unicode characters.

18
Public Function IndexOfAny (anyOf As Char(), startIndex As Integer) As Integer

Returns the zero-based index of the first occurrence in this instance of any character in a
specified array of Unicode characters, starting search at the specified character position.

19
Public Function Insert (startIndex As Integer, value As String) As String

Returns a new string in which a specified string is inserted at a specified index position in
the current string object.

20
Public Shared Function IsNullOrEmpty (value As String) As Boolean

Indicates whether the specified string is null or an Empty string.

21
Public Shared Function Join (separator As String, ParamArray value As String())
As String

Concatenates all the elements of a string array, using the specified separator between
each element.

22
Public Shared Function Join (separator As String, value As String(), startIndex As
Integer, count As Integer) As String

Concatenates the specified elements of a string array, using the specified separator
between each element.

23
Public Function LastIndexOf (value As Char) As Integer

Returns the zero-based index position of the last occurrence of the specified Unicode
character within the current string object.

24
Public Function LastIndexOf (value As String) As Integer

Returns the zero-based index position of the last occurrence of a specified string within
the current string object.

25
Public Function Remove (startIndex As Integer) As String

Removes all the characters in the current instance, beginning at a specified position and
continuing through the last position, and returns the string.

26
Public Function Remove (startIndex As Integer, count As Integer) As String

Removes the specified number of characters in the current string beginning at a specified
position and returns the string.

27
Public Function Replace (oldChar As Char, newChar As Char) As String

Replaces all occurrences of a specified Unicode character in the current string object with
the specified Unicode character and returns the new string.

28
Public Function Replace (oldValue As String, newValue As String) As String

Replaces all occurrences of a specified string in the current string object with the
specified string and returns the new string.

29
Public Function Split (ParamArray separator As Char()) As String()

Returns a string array that contains the substrings in the current string object, delimited
by elements of a specified Unicode character array.

30
Public Function Split (separator As Char(), count As Integer) As String()

Returns a string array that contains the substrings in the current string object, delimited
by elements of a specified Unicode character array. The int parameter specifies the
maximum number of substrings to return.

31
Public Function StartsWith (value As String) As Boolean

Determines whether the beginning of this string instance matches the specified string.

32
Public Function ToCharArray As Char()

Returns a Unicode character array with all the characters in the current string object.

33
Public Function ToCharArray (startIndex As Integer, length As Integer) As Char()

Returns a Unicode character array with all the characters in the current string object,
starting from the specified index and up to the specified length.

34
Public Function ToLower As String

Returns a copy of this string converted to lowercase.

35
Public Function ToUpper As String

Returns a copy of this string converted to uppercase.

36
Public Function Trim As String

Removes all leading and trailing white-space characters from the current String object.

The above list of methods is not exhaustive, please visit MSDN library for the complete list of
methods and String class constructors.

Examples

The following example demonstrates some of the methods mentioned above −

Comparing Strings

Module strings

SubMain()

Dim str1, str2 AsString

 str1 ="This is test"

 str2 ="This is text"

If(String.Compare(str1, str2)=0)Then

Console.WriteLine(str1 +" and "+ str2 +" are equal.")

Else

Console.WriteLine(str1 +" and "+ str2 +" are not equal.")

EndIf

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

This is test and This is text are not equal.

String Contains String

Module strings

SubMain()

Dim str1 AsString

 str1 ="This is test"

If(str1.Contains("test"))Then

Console.WriteLine("The sequence 'test' was found.")

EndIf

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

The sequence 'test' was found.

Getting a Substring:

Module strings

SubMain()

Dim str AsString

 str ="Last night I dreamt of San Pedro"

Console.WriteLine(str)

Dim substr AsString= str.Substring(23)

Console.WriteLine(substr)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Last night I dreamt of San Pedro

San Pedro.

Joining Strings

Module strings

SubMain()

Dim strarray AsString()={

"Down the way where the nights are gay",

"And the sun shines daily on the mountain top",

"I took a trip on a sailing ship",

"And when I reached Jamaica",

"I made a stop"

}

Dim str AsString=String.Join(vbCrLf, strarray)

Console.WriteLine(str)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Down the way where the nights are gay

And the sun shines daily on the mountain top

I took a trip on a sailing ship

And when I reached Jamaica

I made a stop

ARRAY

An array stores a fixed-size sequential collection of elements of the same type. An array is
used to store a collection of data, but it is often more useful to think of an array as a collection of
variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first
element and the highest address to the last element.

Creating Arrays in VB.Net

To declare an array in VB.Net, you use the Dim statement. For example,

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

You can also initialize the array elements while declaring the array. For example,

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya", _

"Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

The elements in an array can be stored and accessed by using the index of the array. The following
program demonstrates this −

Module arrayApl

SubMain()

Dim n(10)AsInteger

Dim i, j AsInteger

For i =0To10

 n(i)= i +100

 Next i

For j =0To10

Console.WriteLine("Element({0}) = {1}", j, n(j))

Next j

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Element(0) = 100

Element(1) = 101

Element(2) = 102

Element(3) = 103

Element(4) = 104

Element(5) = 105

Element(6) = 106

Element(7) = 107

Element(8) = 108

Element(9) = 109

Element(10) = 110

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need of the
program. You can declare a dynamic array using the ReDim statement.

Syntax for ReDim statement −

ReDim [Preserve] arrayname(subscripts)

Where,

 The Preserve keyword helps to preserve the data in an existing array, when you resize it.

 arrayname is the name of the array to re-dimension.

 subscripts specifies the new dimension.

Module arrayApl

SubMain()

Dim marks()AsInteger

ReDim marks(2)

 marks(0)=85

 marks(1)=75

 marks(2)=90

ReDimPreserve marks(10)

 marks(3)=80

 marks(4)=76

 marks(5)=92

 marks(6)=99

 marks(7)=79

 marks(8)=75

For i =0To10

Console.WriteLine(i & vbTab & marks(i))

Next i

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

0 85

1 75

2 90

3 80

4 76

5 92

6 99

7 79

8 75

9 0

10 0

Multi-Dimensional Arrays

VB.Net allows multidimensional arrays. Multidimensional arrays are also called rectangular arrays.

You can declare a 2-dimensional array of strings as −

Dim twoDStringArray(10, 20) As String

or, a 3-dimensional array of Integer variables −

Dim threeDIntArray(10, 10, 10) As Integer

The following program demonstrates creating and using a 2-dimensional array −

Module arrayApl

SubMain()

' an array with 5 rows and 2 columns

 Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

 Dim i, j As Integer

 ' output each array element's value '

For i =0To4

For j =0To1

Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

Next j

Next i

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

a[0,0]: 0

a[0,1]: 0

a[1,0]: 1

a[1,1]: 2

a[2,0]: 2

a[2,1]: 4

a[3,0]: 3

a[3,1]: 6

a[4,0]: 4

a[4,1]: 8

Jagged Array

A Jagged array is an array of arrays. The following code shows declaring a jagged array
named scores of Integers −

Dim scores As Integer()() = New Integer(5)(){}

The following example illustrates using a jagged array −

Module arrayApl

SubMain()

'a jagged array of 5 array of integers

 Dim a As Integer()() = New Integer(4)() {}

 a(0) = New Integer() {0, 0}

 a(1) = New Integer() {1, 2}

 a(2) = New Integer() {2, 4}

 a(3) = New Integer() {3, 6}

 a(4) = New Integer() {4, 8}

 Dim i, j As Integer

 ' output each array element's value

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i)(j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result −

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

The Array Class

The Array class is the base class for all the arrays in VB.Net. It is defined in the System namespace.
The Array class provides various properties and methods to work with arrays.

Properties of the Array Class

The following table provides some of the most commonly used properties of the Array class −

Sr.No Property Name & Description

1
IsFixedSize

Gets a value indicating whether the Array has a fixed size.

2
IsReadOnly

Gets a value indicating whether the Array is read-only.

3
Length

Gets a 32-bit integer that represents the total number of elements in all the dimensions of
the Array.

4
LongLength

Gets a 64-bit integer that represents the total number of elements in all the dimensions of
the Array.

5
Rank

Gets the rank (number of dimensions) of the Array.

Methods of the Array Class

The following table provides some of the most commonly used methods of the Array class −

Sr.No Method Name & Description

1
Public Shared Sub Clear (array As Array, index As Integer, length As Integer)

Sets a range of elements in the Array to zero, to false, or to null, depending on the
element type.

2
Public Shared Sub Copy (sourceArray As Array, destinationArray As Array, length
As Integer)

Copies a range of elements from an Array starting at the first element and pastes them
into another Array starting at the first element. The length is specified as a 32-bit integer.

3
Public Sub CopyTo (array As Array, index As Integer)

Copies all the elements of the current one-dimensional Array to the specified one-
dimensional Array starting at the specified destination Array index. The index is specified
as a 32-bit integer.

4
Public Function GetLength (dimension As Integer) As Integer

Gets a 32-bit integer that represents the number of elements in the specified dimension of
the Array.

5
Public Function GetLongLength (dimension As Integer) As Long

Gets a 64-bit integer that represents the number of elements in the specified dimension of
the Array.

6
Public Function GetLowerBound (dimension As Integer) As Integer

Gets the lower bound of the specified dimension in the Array.

7
Public Function GetType As Type

Gets the Type of the current instance (Inherited from Object).

8
Public Function GetUpperBound (dimension As Integer) As Integer

Gets the upper bound of the specified dimension in the Array.

9
Public Function GetValue (index As Integer) As Object

Gets the value at the specified position in the one-dimensional Array. The index is
specified as a 32-bit integer.

10
Public Shared Function IndexOf (array As Array,value As Object) As Integer

Searches for the specified object and returns the index of the first occurrence within the
entire one-dimensional Array.

11
Public Shared Sub Reverse (array As Array)

Reverses the sequence of the elements in the entire one-dimensional Array.

12
Public Sub SetValue (value As Object, index As Integer)

Sets a value to the element at the specified position in the one-dimensional Array. The
index is specified as a 32-bit integer.

For complete list of Array class properties and methods, please consult Microsoft documentation.

Example

The following program demonstrates use of some of the methods of the Array class:

Module arrayApl

SubMain()

Dim list AsInteger()={34,72,13,44,25,30,10}

Dim temp AsInteger()= list

Dim i AsInteger

Console.Write("Original Array: ")

ForEach i In list

Console.Write("{0} ", i)

Next i

Console.WriteLine()

' reverse the array

 Array.Reverse(temp)

 Console.Write("Reversed Array: ")

 For Each i In temp

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 'sort the array

Array.Sort(list)

Console.Write("Sorted Array: ")

ForEach i In list

Console.Write("{0} ", i)

Next i

Console.WriteLine()

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Original Array: 34 72 13 44 25 30 10

Reversed Array: 10 30 25 44 13 72 34

Sorted Array: 10 13 25 30 34 44 72

Class

VB.Net is an object-oriented programming language. In Object-Oriented Programming

methodology, a program consists of various objects that interact with each other by means of

actions. The actions that an object may take are called methods. Objects of the same kind are

said to have the same type or, more often, are said to be in the same class.

When we consider a VB.Net program, it can be defined as a collection of objects that

communicate via invoking each other's methods. Let us now briefly look into what do class,

object, methods and instance variables mean.

 Object − Objects have states and behaviors. Example: A dog has states - color, name,

breed as well as behaviors - wagging, barking, eating, etc. An object is an instance of a

class.

 Class − A class can be defined as a template/blueprint that describes the behaviors/states

that objects of its type support.

 Methods − A method is basically a behavior. A class can contain many methods. It is in

methods where the logics are written, data is manipulated and all the actions are

executed.

 Instance Variables − Each object has its unique set of instance variables. An object's

state is created by the values assigned to these instance variables.

A Rectangle Class in VB.Net

For example, let us consider a Rectangle object. It has attributes like length and width.

Depending upon the design, it may need ways for accepting the values of these attributes,

calculating area and displaying details.

Let us look at an implementation of a Rectangle class and discuss VB.Net basic syntax on the

basis of our observations in it −

ImportsSystem

PublicClassRectangle

Private length AsDouble

Private width AsDouble

'Public methods

 Public Sub AcceptDetails()

 length = 4.5

 width = 3.5

 End Sub

 Public Function GetArea() As Double

 GetArea = length * width

 End Function

 Public Sub Display()

 Console.WriteLine("Length: {0}", length)

 Console.WriteLine("Width: {0}", width)

 Console.WriteLine("Area: {0}", GetArea())

 End Sub

 Shared Sub Main()

 Dim r As New Rectangle()

 r.Acceptdetails()

 r.Display()

 Console.ReadLine()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result −

Length: 4.5

Width: 3.5

Area: 15.75

In previous chapter, we created a Visual Basic module that held the code. Sub Main indicates

the entry point of VB.Net program. Here, we are using Class that contains both code and data.

You use classes to create objects. For example, in the code, r is a Rectangle object.

An object is an instance of a class −

Dim r As New Rectangle()

A class may have members that can be accessible from outside class, if so specified. Data

members are called fields and procedure members are called methods.

Shared methods or static methods can be invoked without creating an object of the class.

Instance methods are invoked through an object of the class −

SharedSubMain()

Dim r AsNewRectangle()

 r.Acceptdetails()

 r.Display()

Console.ReadLine()

EndSub

A procedure is a group of statements that together perform a task when called. After the
procedure is executed, the control returns to the statement calling the procedure. VB.Net has two
types of procedures −

 Functions

 Sub procedures or Subs

Functions return a value, whereas Subs do not return a value.

Function

The Function statement is used to declare the name, parameter and the body of a function. The
syntax for the Function statement is −

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

Where,

 Modifiers − specify the access level of the function; possible values are: Public, Private,
Protected, Friend, Protected Friend and information regarding overloading, overriding,
sharing, and shadowing.

 FunctionName − indicates the name of the function

 ParameterList − specifies the list of the parameters

 ReturnType − specifies the data type of the variable the function returns

Example

Following code snippet shows a function FindMax that takes two integer values and returns the
larger of the two.

FunctionFindMax(ByVal num1 AsInteger,ByVal num2 AsInteger)AsInteger

' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

End Function

Function Returning a Value

In VB.Net, a function can return a value to the calling code in two ways −

 By using the return statement

 By assigning the value to the function name

The following example demonstrates using the FindMax function −

Module myfunctions

FunctionFindMax(ByVal num1 AsInteger,ByVal num2 AsInteger)AsInteger

' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

 End Function

 Sub Main()

 Dim a As Integer = 100

 Dim b As Integer = 200

 Dim res As Integer

 res = FindMax(a, b)

 Console.WriteLine("Max value is : {0}", res)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result −

Max value is : 200

Recursive Function

A function can call itself. This is known as recursion. Following is an example that calculates factorial
for a given number using a recursive function −

Module myfunctions

Function factorial(ByVal num AsInteger)AsInteger

' local variable declaration */

 Dim result As Integer

 If (num = 1) Then

 Return 1

 Else

 result = factorial(num - 1) * num

 Return result

 End If

 End Function

 Sub Main()

 'calling the factorial method

Console.WriteLine("Factorial of 6 is : {0}", factorial(6))

Console.WriteLine("Factorial of 7 is : {0}", factorial(7))

Console.WriteLine("Factorial of 8 is : {0}", factorial(8))

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Factorial of 6 is: 720

Factorial of 7 is: 5040

Factorial of 8 is: 40320

Param Arrays

At times, while declaring a function or sub procedure, you are not sure of the number of arguments
passed as a parameter. VB.Net param arrays (or parameter arrays) come into help at these times.

The following example demonstrates this −

Module myparamfunc

FunctionAddElements(ParamArray arr AsInteger())AsInteger

Dim sum AsInteger=0

Dim i AsInteger=0

ForEach i In arr

 sum += i

Next i

Return sum

EndFunction

SubMain()

Dim sum AsInteger

 sum =AddElements(512,720,250,567,889)

Console.WriteLine("The sum is: {0}", sum)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

The sum is: 2938

Passing Arrays as Function Arguments

You can pass an array as a function argument in VB.Net. The following example demonstrates this −

Module arrayParameter

Function getAverage(ByVal arr AsInteger(),ByVal size AsInteger)AsDouble

'local variables

 Dim i As Integer

 Dim avg As Double

 Dim sum As Integer = 0

 For i = 0 To size - 1

 sum += arr(i)

 Next i

 avg = sum / size

 Return avg

 End Function

 Sub Main()

 ' an int array with5 elements '

 Dim balance As Integer() = {1000, 2, 3, 17, 50}

 Dim avg As Double

 'pass pointer to the array as an argument

 avg = getAverage(balance,5)

' output the returned value '

Console.WriteLine("Average value is: {0} ", avg)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Average value is: 214.4

Sub Procedures

Sub procedures are procedures that do not return any value. We have been using the Sub
procedure Main in all our examples. We have been writing console applications so far in these
tutorials. When these applications start, the control goes to the Main Sub procedure, and it in turn,
runs any other statements constituting the body of the program.

Defining Sub Procedures

The Sub statement is used to declare the name, parameter and the body of a sub procedure. The
syntax for the Sub statement is −

[Modifiers] Sub SubName [(ParameterList)]

 [Statements]

End Sub

Where,

 Modifiers − specify the access level of the procedure; possible values are - Public, Private,
Protected, Friend, Protected Friend and information regarding overloading, overriding,
sharing, and shadowing.

 SubName − indicates the name of the Sub

 ParameterList − specifies the list of the parameters

Example

The following example demonstrates a Sub procedure CalculatePay that takes two
parameters hours and wages and displays the total pay of an employee −

Module mysub

SubCalculatePay(ByRef hours AsDouble,ByRef wage AsDecimal)

'local variable declaration

 Dim pay As Double

 pay = hours * wage

 Console.WriteLine("Total Pay: {0:C}", pay)

 End Sub

 Sub Main()

 'calling the CalculatePaySubProcedure

CalculatePay(25,10)

CalculatePay(40,20)

CalculatePay(30,27.5)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Total Pay: $250.00

Total Pay: $800.00

Total Pay: $825.00

Passing Parameters by Value

This is the default mechanism for passing parameters to a method. In this mechanism, when a
method is called, a new storage location is created for each value parameter. The values of the
actual parameters are copied into them. So, the changes made to the parameter inside the method
have no effect on the argument.

In VB.Net, you declare the reference parameters using the ByVal keyword. The following example
demonstrates the concept –

Module paramByval

Sub swap(ByVal x AsInteger,ByVal y AsInteger)

Dim temp AsInteger

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 'local variable definition

Dim a AsInteger=100

Dim b AsInteger=200

Console.WriteLine("Before swap, value of a : {0}", a)

Console.WriteLine("Before swap, value of b : {0}", b)

' calling a function to swap the values '

 swap(a, b)

Console.WriteLine("After swap, value of a : {0}", a)

Console.WriteLine("After swap, value of b : {0}", b)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

It shows that there is no change in the values though they had been changed inside the function.

Passing Parameters by Reference

A reference parameter is a reference to a memory location of a variable. When you pass parameters
by reference, unlike value parameters, a new storage location is not created for these parameters.
The reference parameters represent the same memory location as the actual parameters that are
supplied to the method.

In VB.Net, you declare the reference parameters using the ByRef keyword. The following example
demonstrates this −

Module paramByref

Sub swap(ByRef x AsInteger,ByRef y AsInteger)

Dim temp AsInteger

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 'local variable definition

Dim a AsInteger=100

Dim b AsInteger=200

Console.WriteLine("Before swap, value of a : {0}", a)

Console.WriteLine("Before swap, value of b : {0}", b)

' calling a function to swap the values '

 swap(a, b)

Console.WriteLine("After swap, value of a : {0}", a)

Console.WriteLine("After swap, value of b : {0}", b)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

When you define a class, you define a blueprint for a data type. This doesn't actually define any
data, but it does define what the class name means, that is, what an object of the class will consist of
and what operations can be performed on such an object.

Objects are instances of a class. The methods and variables that constitute a class are called
members of the class.

Class Definition

A class definition starts with the keyword Class followed by the class name; and the class body,
ended by the End Class statement. Following is the general form of a class definition −

[<attributelist>][accessmodifier

][Shadows][MustInherit|NotInheritable][Partial] _

Class name [(Of typelist)]

[Inherits classname]

[Implements interfacenames]

[statements]

EndClass

Where,

 attributelist is a list of attributes that apply to the class. Optional.

 accessmodifier defines the access levels of the class, it has values as - Public, Protected,
Friend, Protected Friend and Private. Optional.

 Shadows indicate that the variable re-declares and hides an identically named element, or set
of overloaded elements, in a base class. Optional.

 MustInherit specifies that the class can be used only as a base class and that you cannot
create an object directly from it, i.e., an abstract class. Optional.

 NotInheritable specifies that the class cannot be used as a base class.

 Partial indicates a partial definition of the class.

 Inherits specifies the base class it is inheriting from.

 Implements specifies the interfaces the class is inheriting from.

The following example demonstrates a Box class, with three data members, length, breadth and
height −

Module mybox

ClassBox

Public length AsDouble' Length of a box

 Public breadth As Double 'Breadthof a box

Public height AsDouble' Height of a box

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() 'DeclareBox1of type Box

DimBox2AsBox=NewBox()' Declare Box2 of type Box

 Dim volume As Double = 0.0 'Store the volume of a box here

' box 1 specification

 Box1.height = 5.0

 Box1.length = 6.0

 Box1.breadth = 7.0

 ' box 2 specification

Box2.height =10.0

Box2.length =12.0

Box2.breadth =13.0

'volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume =Box2.height *Box2.length *Box2.breadth

Console.WriteLine("Volume of Box2 : {0}", volume)

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Volume of Box2 : 1560

Member Functions and Encapsulation

A member function of a class is a function that has its definition or its prototype within the class
definition like any other variable. It operates on any object of the class of which it is a member and
has access to all the members of a class for that object.

Member variables are attributes of an object (from design perspective) and they are kept private to
implement encapsulation. These variables can only be accessed using the public member functions.

Let us put above concepts to set and get the value of different class members in a class –

Module mybox

ClassBox

Public length AsDouble' Length of a box

 Public breadth As Double 'Breadthof a box

Public height AsDouble' Height of a box

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Sub setBreadth(ByVal bre As Double)

 breadth = bre

 End Sub

 Public Sub setHeight(ByVal hei As Double)

 height = hei

 End Sub

 Public Function getVolume() As Double

 Return length * breadth * height

 End Function

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() 'DeclareBox1of type Box

DimBox2AsBox=NewBox()' Declare Box2 of type Box

 Dim volume As Double = 0.0 'Store the volume of a box here

' box 1 specification

 Box1.setLength(6.0)

 Box1.setBreadth(7.0)

 Box1.setHeight(5.0)

 'box 2 specification

Box2.setLength(12.0)

Box2.setBreadth(13.0)

Box2.setHeight(10.0)

' volume of box 1

 volume = Box1.getVolume()

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume =Box2.getVolume()

Console.WriteLine("Volume of Box2 : {0}", volume)

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Volume of Box2 : 1560

Constructors and Destructors

A class constructor is a special member Sub of a class that is executed whenever we create new
objects of that class. A constructor has the name New and it does not have any return type.

Following program explains the concept of constructor −

ClassLine

Private length AsDouble' Length of a line

 Public Sub New() 'constructor

Console.WriteLine("Object is being created")

EndSub

PublicSub setLength(ByVal len AsDouble)

 length = len

EndSub

PublicFunction getLength()AsDouble

Return length

EndFunction

SharedSubMain()

Dim line AsLine=NewLine()

'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result −

Object is being created

Length of line : 6

A default constructor does not have any parameter, but if you need, a constructor can have
parameters. Such constructors are called parameterized constructors. This technique helps you to
assign initial value to an object at the time of its creation as shown in the following example −

ClassLine

Private length AsDouble' Length of a line

 Public Sub New(ByVal len As Double) 'parameterised constructor

Console.WriteLine("Object is being created, length = {0}", len)

 length = len

EndSub

PublicSub setLength(ByVal len AsDouble)

 length = len

EndSub

PublicFunction getLength()AsDouble

Return length

EndFunction

SharedSubMain()

Dim line AsLine=NewLine(10.0)

Console.WriteLine("Length of line set by constructor : {0}", line.getLength())

'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line set by setLength : {0}",

line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result −

Object is being created, length = 10

Length of line set by constructor : 10

Length of line set by setLength : 6

A destructor is a special member Sub of a class that is executed whenever an object of its
class goes out of scope.

A destructor has the name Finalize and it can neither return a value nor can it take any parameters.
Destructor can be very useful for releasing resources before coming out of the program like closing
files, releasing memories, etc.

Destructors cannot be inherited or overloaded.

Following example explains the concept of destructor −

ClassLine

Private length AsDouble

 Public Sub New()

Console.WriteLine("Object is being created")

EndSub

ProtectedOverridesSubFinalize()' destructor

 Console.WriteLine("Object is being deleted")

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 line.setLength(6.0)

Console.WriteLine("Length of line : {0}", line.getLength())

Console.ReadKey()

EndSub

EndClass

When the above code is compiled and executed, it produces the following result −

Object is being created

Length of line : 6

Object is being deleted

Shared Members of a VB.Net Class

We can define class members as static using the Shared keyword. When we declare a member of a
class as Shared, it means no matter how many objects of the class are created, there is only one
copy of the member.

The keyword Shared implies that only one instance of the member exists for a class. Shared
variables are used for defining constants because their values can be retrieved by invoking the class
without creating an instance of it.

Shared variables can be initialized outside the member function or class definition. You can also
initialize Shared variables inside the class definition.

You can also declare a member function as Shared. Such functions can access only Shared
variables. The Shared functions exist even before the object is created.

The following example demonstrates the use of shared members −

ClassStaticVar

PublicShared num AsInteger

PublicSub count()

 num = num +1

EndSub

PublicSharedFunction getNum()AsInteger

Return num

EndFunction

SharedSubMain()

Dim s AsStaticVar=NewStaticVar()

 s.count()

 s.count()

 s.count()

Console.WriteLine("Value of variable num: {0}",StaticVar.getNum())

Console.ReadKey()

EndSub

EndClass

When the above code is compiled and executed, it produces the following result −

Value of variable num: 3

INHERITANCE

 One of the most important concepts in object-oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of another class which makes it easier to create and
maintain an application. This also provides an opportunity to reuse the code functionality and fast
implementation time.

When creating a class, instead of writing completely new data members and member functions, the
programmer can designate that the new class should inherit the members of an existing class. This
existing class is called the base class, and the new class is referred to as the derived class.

Base & Derived Classes

A class can be derived from more than one class or interface, which means that it can inherit data
and functions from multiple base classes or interfaces.

The syntax used in VB.Net for creating derived classes is as follows −

<access-specifier> Class <base_class>

...

End Class

Class <derived_class>: Inherits <base_class>

...

End Class

Consider a base class Shape and its derived class Rectangle −

' Base class

Class Shape

 Protected width As Integer

 Protected height As Integer

 Public Sub setWidth(ByVal w As Integer)

 width = w

 End Sub

 Public Sub setHeight(ByVal h As Integer)

 height = h

 End Sub

End Class

'Derivedclass

ClassRectangle:InheritsShape

PublicFunction getArea()AsInteger

Return(width * height)

EndFunction

EndClass

ClassRectangleTester

SharedSubMain()

Dim rect AsRectangle=NewRectangle()

 rect.setWidth(5)

 rect.setHeight(7)

' Print the area of the object.

 Console.WriteLine("Total area: {0}", rect.getArea())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result −

Total area: 35

Base Class Initialization

The derived class inherits the base class member variables and member methods. Therefore, the
super class object should be created before the subclass is created. The super class or the base
class is implicitly known as MyBase in VB.Net

The following program demonstrates this –

' Base class

Class Rectangle

 Protected width As Double

 Protected length As Double

 Public Sub New(ByVal l As Double, ByVal w As Double)

 length = l

 width = w

 End Sub

 Public Function GetArea() As Double

 Return (width * length)

 End Function

 Public Overridable Sub Display()

 Console.WriteLine("Length: {0}", length)

 Console.WriteLine("Width: {0}", width)

 Console.WriteLine("Area: {0}", GetArea())

 End Sub

 'endclassRectangle

EndClass

'Derived class

Class Tabletop : Inherits Rectangle

 Private cost As Double

 Public Sub New(ByVal l As Double, ByVal w As Double)

 MyBase.New(l, w)

 End Sub

 Public Function GetCost() As Double

 Dim cost As Double

 cost = GetArea() * 70

 Return cost

 End Function

 Public Overrides Sub Display()

 MyBase.Display()

 Console.WriteLine("Cost: {0}", GetCost())

 End Sub

 'endclassTabletop

EndClass

ClassRectangleTester

SharedSubMain()

Dim t AsTabletop=NewTabletop(4.5,7.5)

 t.Display()

Console.ReadKey()

EndSub

EndClass

When the above code is compiled and executed, it produces the following result −

Length: 4.5

Width: 7.5

Area: 33.75

Cost: 2362.5

VB.Net supports multiple inheritance.

NAMESPACE

Software projects consist of several pieces of code such as classes, declarations,
procedures and functions etc., known as the component or identifiers of the software project. In
large projects the number of these components can be very large. These components can be
grouped into smaller subcategories. This logical grouping construct is known as a "Namespace" or
we can say that the group of code having a specific name is a "Namespace". In a Namespace the
groups of components are somehow related to each other. Namespaces are similar in concept to

a folder in a computer file system. Like folders, namespaces enable classes to have a unique
name or we can say that it is a logical naming scheme for grouping related types. A Namespace is
sometimes also called a name scope. An identifier defined in a Namespace belongs to that
Namespace and the same identifier can be independently defined in multiple Namespaces with a
different or the same meaning. Every project in C# or VB.NET starts with a Namespace, by default
the same name as the name of the project.

Why we need it

We must add a reference of the Namespace object before using that object in a project. Several
references are automatically added in the project by default. The VB.Net "Imports" keyword is
used to add a reference of a namespace manually.

Example

1. Imports System

Note: Imports allow access to classes in the referenced Namespace only not in its internal or child
Namespaces. If we want to access internal Namespace we might need to write:

1. Imports System.Collections

Namespaces are basically used to avoid naming collisions, when we have multiple classes with the
same name, and it is also helpful for organizing classes libraries in a hierarchal structure.
Namespaces allow us to organize Classes so that they can be easily accessed in other applications.
Namespaces also enable reusability.

A class in .Net Framework cannot belong to multiple Namespaces. One class should belong to only
one Namespace. VB.NET does not allow two classes with the same name to be used in a program.

We can define a Namespace using the "Namespace" keyword. The syntax for declaring a
Namespace is:

1. Namespace <Namespace_name>
2.
3. // Classes and/or structs and/or enums etc.
4.
5. End Namespace

Example

Note: All the classes in the .Net Framework belongs to the System Namespace. The "system"
Namespace has built-in VB functionality and all other Namespaces are based on this "system"
Namespace.

Accessing Members of a Namespace

We can access a member of a Namespace by using a dot(.) operator, also known as the period
operator. The members of a Namespace are the variables, procedures and classes that are defined
within a Namespace. To access the member of a namespace in a desired location type the name of

the namespace followed by the dot or period operator followed by the desired member of the
namespace.

Example

MyNamespace.Class1.disp() 'Accessing elements of the MyNamspace

we can access a member of a namespace in various ways. The following program shows accessing
the element of a namespace in various ways.

1. Imports System
2. Namespace Birds 'user defined namespace Bird
3. Class Parrot 'Parrot is a class in the namespace Animals
4. Public Shared Function fly() 'Fly is a function in this Class
5. Console.WriteLine("Parrot can fly")
6. End Function
7. Public Shared Function color() ' color is another function in parrot class
8. Console.WriteLine("normally Parrots are green")
9. End Function
10. Public Shared Function type()
11. Console.WriteLine("Different type of parrot are found around the world")
12. End Function
13. End Class
14. End Namespace
15.
16. Module Module1
17. Public Function myfunction()
18. Dim P As Birds.Parrot
19. P = New Birds.Parrot()
20. P.type() 'accessing member of the namespace bird
21. End Function
22. Sub main()
23. Console.Clear()
24. Birds.Parrot.fly() 'accessing member of the namespace
25. ConsoleApplication5.Birds.Parrot.color() 'another way to access member of the namespa

ce
26. myfunction()
27. End Sub
28. End Module

Output

1. Namespace MyNamespace 'class with in a namespace
2. Public Class Class1
3. Public Shared Function disp() 'function declared within the class

4. Console.Write("hello" & vbCrLf)
5. End Function
6. End Class
7. End Namespace

Nesting a Namespace

Nesting a Namespace means create a namespace inside a namespace. A good way to organize
namespaces is to put them in a hierarchal order, i.e. general name at the top of the hierarchy and put
specific names at the lower level.

Example

1. Imports System
2. Namespace outer 'declare an outer namespace
3. Public Class nameout
4. Public Shared Function disp() 'create a function inside a outer namespace
5. Console.WriteLine("hi this is outer name space")
6. End Function
7. End Class
8.
9. Namespace inner 'decalre an inner namespace
10. Public Class nameinn
11. Public Shared Function disp() 'create a function inside the inner namespace
12. Console.WriteLine("hi this is inner namespace")
13. End Function
14. End Class
15. End Namespace
16.
17. End Namespace
18.
19. Module module1
20. Sub main()
21. Console.Clear()
22. outer.nameout.disp() 'accesing function of the outer namespace
23. outer.inner.nameinn.disp() 'accessing fucntion of the inner namespace
24. End Sub

25. End Module
26.

Output

Note: You can not have two classes with the same name in the same scope. In other words, class
overloading is not allowed.

Example

1. Namespace MyNamespace
2. Public Class one 'sample class with in a namespace
3. Public Shared Function disp() 'function declared within the class
4. Console.Write("hello" & vbCrLf)
5. End Function
6. End Class
7.
8. Public Class one 'this is not allowed
9. Public Shared Function disp1()
10. Console.Write("hi")
11. End Function
12. End Class
13. End Namespace

You can avoid this by putting classes with the same name in a different scope.

Example

1. Namespace outerscope 'sample class with in a namespace
2. Public Class one
3. Public Shared Function disp() 'function declared within the class
4. Console.Write("hello class with outerscope" & vbCrLf)
5. End Function
6. End Class
7. Namespace innerscope

8. Public Class one 'same class with different scope
9. Public Shared Function disp1()
10. Console.Write("hi this class is wihtin innerscope of outscope namespace " & vbCrLf)

11. End Function
12. End Class
13. End Namespace
14. End Namespace
15.
16. Module module1
17. Sub main()
18. Console.Clear()
19. outerscope.one.disp()
20. outerscope.innerscope.one.disp1()
21. End Sub
22. End Module

Output

Delegates and Events

A delegate is a class that can hold a reference to a method. Unlike other classes, a delegate class

has a signature, and it can hold references only to methods that match its signature. A delegate is

thus equivalent to a type-safe function pointer or a callback. Although delegates have other uses, the

discussion here focuses on the event-handling functionality of delegates.

Events in VB.NET are handled by delegates, which serve as a mechanism that defines one or more

callback functions to process events. An event is a message sent by an object to signal the

occurrence of an action. The action could arise from user interaction, such as a mouse click, or could

be triggered by some other program logic. The object that triggers the event is called the event

sender. The object that captures the event and responds to it is called the event receiver.

In event communication, the event sender class does not know which object or method will handle

the events it raises. It merely functions as an intermediary or pointer-like mechanism between the

source and the receiver, as illustrated in Listing 5.47. The .NET framework defines a special type

delegate that serves as a function pointer.

Listing 5.47: DelegateEvent.VB, Delegates and Events Example

Public Class MyEvt

 Public Delegate Sub t(ByVal sender As [Object], ByVal e As MyArgs)

 ' declare a delegate

 Public Event tEvt As t

 'declares an event for the delegate

 Public Sub mm()

 'function that will raise the callback

 Dim r As New MyArgs()

 RaiseEvent tEvt(Me, r)

 'calling the client code

 End Sub

 Public Sub New()

 End Sub

End Class

'arguments for the callback

Public Class MyArgs

 Inherits EventArgs

 Public Sub New()

 End Sub

End Class

Public Class MyEvtClient

 Private oo As MyEvt

 Public Sub New()

 Me.oo = New MyEvt()

 AddHandler Me.oo.tEvt, New MyEvt.t(AddressOf oo_tt)

 End Sub

 Public Shared Sub Main(ByVal args As [String]())

 Dim cc As New MyEvtClient()

 cc.oo.mm()

 End Sub

 'this code will be called from the server

 Public Sub oo_tt(ByVal sender As Object, ByVal e As MyArgs)

 Console.WriteLine("yes")

 Console.ReadLine()

 End Sub

End Class

EXCEPTIONS HANDLING

An exception is a problem that arises during the execution of a program. An exception is a
response to an exceptional circumstance that arises while a program is running, such as an attempt
to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. VB.Net
exception handling is built upon four keywords - Try, Catch, Finally and Throw.

 Try − A Try block identifies a block of code for which particular exceptions will be activated. It's
followed by one or more Catch blocks.

 Catch − A program catches an exception with an exception handler at the place in a program
where you want to handle the problem. The Catch keyword indicates the catching of an
exception.

 Finally − The Finally block is used to execute a given set of statements, whether an exception
is thrown or not thrown. For example, if you open a file, it must be closed whether an
exception is raised or not.

 Throw − A program throws an exception when a problem shows up. This is done using a
Throw keyword.

Syntax

Assuming a block will raise an exception, a method catches an exception using a combination of the
Try and Catch keywords. A Try/Catch block is placed around the code that might generate an
exception. Code within a Try/Catch block is referred to as protected code, and the syntax for using
Try/Catch looks like the following −

Try

 [tryStatements]

 [Exit Try]

[Catch [exception [As type]] [When expression]

 [catchStatements]

 [Exit Try]]

[Catch ...]

[Finally

 [finallyStatements]]

End Try

You can list down multiple catch statements to catch different type of exceptions in case your try
block raises more than one exception in different situations.

Exception Classes in .Net Framework

In the .Net Framework, exceptions are represented by classes. The exception classes in .Net
Framework are mainly directly or indirectly derived from the System.Exception class. Some of the
exception classes derived from the System.Exception class are
the System.ApplicationException and System.SystemException classes.

The System.ApplicationException class supports exceptions generated by application programs.
So the exceptions defined by the programmers should derive from this class.

The System.SystemException class is the base class for all predefined system exception.

The following table provides some of the predefined exception classes derived from the
Sytem.SystemException class −

Exception Class Description

System.IO.IOException Handles I/O errors.

System.IndexOutOfRangeException Handles errors generated when a method refers to an
array index out of range.

System.ArrayTypeMismatchException Handles errors generated when type is mismatched with
the array type.

System.NullReferenceException Handles errors generated from deferencing a null object.

System.DivideByZeroException Handles errors generated from dividing a dividend with
zero.

System.InvalidCastException Handles errors generated during typecasting.

System.OutOfMemoryException Handles errors generated from insufficient free memory.

System.StackOverflowException Handles errors generated from stack overflow.

Handling Exceptions

VB.Net provides a structured solution to the exception handling problems in the form of try and catch
blocks. Using these blocks the core program statements are separated from the error-handling
statements.

These error handling blocks are implemented using the Try, Catch and Finally keywords. Following
is an example of throwing an exception when dividing by zero condition occurs –

Module exceptionProg

Sub division(ByVal num1 AsInteger,ByVal num2 AsInteger)

Dim result AsInteger

Try

 result = num1 \ num2

Catch e AsDivideByZeroException

Console.WriteLine("Exception caught: {0}", e)

Finally

Console.WriteLine("Result: {0}", result)

EndTry

EndSub

SubMain()

 division(25,0)

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

Exception caught: System.DivideByZeroException: Attempted to divide by zero.

at ...

Result: 0

Creating User-Defined Exceptions

You can also define your own exception. User-defined exception classes are derived from
the ApplicationException class. The following example demonstrates this −

Module exceptionProg

PublicClassTempIsZeroException:InheritsApplicationException

PublicSubNew(ByVal message AsString)

MyBase.New(message)

EndSub

EndClass

PublicClassTemperature

Dim temperature AsInteger=0

Sub showTemp()

If(temperature =0)Then

Throw(NewTempIsZeroException("Zero Temperature found"))

Else

Console.WriteLine("Temperature: {0}", temperature)

EndIf

EndSub

EndClass

SubMain()

Dim temp AsTemperature=NewTemperature()

Try

 temp.showTemp()

Catch e AsTempIsZeroException

Console.WriteLine("TempIsZeroException: {0}", e.Message)

EndTry

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

TempIsZeroException: Zero Temperature found

Throwing Objects

You can throw an object if it is either directly or indirectly derived from the System.Exception class.

You can use a throw statement in the catch block to throw the present object as −

Throw [expression]

The following program demonstrates this −

Module exceptionProg

SubMain()

Try

ThrowNewApplicationException("A custom exception _ is being thrown here...")

Catch e AsException

Console.WriteLine(e.Message)

Finally

Console.WriteLine("Now inside the Finally Block")

EndTry

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result −

A custom exception is being thrown here...

Now inside the Finally Block

THREAD

When two or more processes execute simultaneously in a program, the process is known as
multithreading. And the execution of each process is known as the thread. A single thread is used to
execute a single logic or task in an application. By default, each application has one or more threads
to execute each process, and that thread is known as the main thread.

To create and access a new thread in the Thread class, we need to import
the System.Threading namespace. When the execution of a program begins in VB.NET, the Main
thread is automatically called to handle the program logic. And if we create another thread to execute
the process in Thread class, the new thread will become the child thread for the main thread.

Create a new Thread

In VB.NET, we can create a thread by extending the Thread class and pass the ThreadStart delegate
as an argument to the Thread constructor. A ThreadStart() is a method executed by the new thread.
We need to call the Start() method to start the execution of the new thread because it is initially in
the unstart state. And the PrintInfo parameter contains an executable statement that is executed
when creating a new thread.

1. ' Create a new thread

2. Dim th As Thread = New Thread(New ThreadStart(PrintInfo))

3. ' Start the execution of newly thread

4. th.Start()

Let's write a program to create and access the thread in Thread class.

create_Thread.vb

1. Imports System.Threading 'Imports the System.Threading namespace.

2. Module create_Thread

3. Sub Main(ByVal args As String())

4. ' create a new thread

5. Dim th As Thread = New Thread(New ThreadStart(AddressOf PrintInfo))

6. ' start the newly created thread

7. th.Start()

8. Console.WriteLine(" It is a Main Thread")

9. End Sub

10. Private Sub PrintInfo()

11. For j As Integer = 1 To 5

12. Console.WriteLine(" value of j is {0}", j)

13. Next j

14. Console.WriteLine(" It is a child thread")

15. Console.WriteLine(" Press any key to exit...")

16. Console.ReadKey()

17. End Sub

18. End Module

https://www.javatpoint.com/vb-net

Output:

In the above program, the main and child threads begin their execution simultaneously. The
execution of the main thread is stopped after completing its function, but the child thread will continue
to execute until its task is finished.

VB.NET Thread Methods

The following are the most commonly used methods of Thread class.

Method Description

Abort() As the name defines, it is used to terminate the execution of a thread.

AllocateDataSlot() It is used to create a slot for unnamed data on all threads.

AllocateNamedDatsSlot() It is used to create a slot for defined data on all threads.

Equals() It is used to check whether the current and defined thread object are equal.

Interrupt() It is used to interrupt a thread from the Wait, sleep, and join thread state.

Join() It is a synchronization method that stops the calling thread until the execution thread completes.

Resume() As the name suggests, a Resume() method is used to resume a thread that has been suspended.

Sleep() It is used to suspend the currently executing thread for a specified time.

Start() It is used to start the execution of thread or change the state of an ongoing instance.

Suspend() It is used to stop the currently executing thread.

VB.NET Thread Life Cycle

In VB.NET Multithreading, each thread has a life cycle that starts when a new object is created using
the Thread Class. Once the task defined by the thread class is complete, the life cycle of a thread will
get the end.

There are some states of thread cycle in VB.NET programming.

State Description

Unstarted When we create a new thread, it is initially in an unstarted state.

Runnable When we call a Start() method to prepare a thread for running, the runnable situation occurs.

Running A Running state represents that the current thread is running.

Not

Runnable

It indicates that the thread is not in a runnable state, which means that the thread in sleep() or wait() or suspend() or is

blocked by the I/O operation.

Dead If the thread is in a dead state, either the thread has been completed its work or aborted.

Let's create a program to manage a thread by using various methods of Thread Class.

Thread_cycle.vb

1. Imports System.Threading

2. Module Thread_cycle

3. Sub Main(ByVal args As String())

4. Dim s As Stopwatch = New Stopwatch()

5. s.Start()

6. Dim t As Thread = New Thread(New ThreadStart(AddressOf PrintInfo))

7. t.Start()

8. ' Halt another thread execution until the thread execution completed

9. t.Join()

10. s.[Stop]()

11. Dim t1 As TimeSpan = s.Elapsed

12. Dim ft As String = String.Format("{0}: {1} : {2}", t1.Hours, t1.Minutes, t1.Seconds)

13. Console.WriteLine(" Total Elapsed Time : {0}", ft)

14. Console.WriteLine("Completion of Thread Execution ")

15. Console.WriteLine("Press any key to exit...")

16. Console.ReadKey()

17. End Sub

18. Private Sub PrintInfo()

19. For j As Integer = 1 To 6

20. Console.WriteLine(" Halt Thread for {0} Second", 5)

21. ' It pause thread for 5 Seconds

22. Thread.Sleep(5000)

23. Console.WriteLine(" Value of i {0}", j)

24. Next

25. End Sub

26. End Module

Output:

In the above example, we used a different method of the Thread class such as the Start() method to
start execution of the thread, the Join() method is used to stop the execution of the thread until the
execution of the thread was completed. The Sleep() method is used to pause the execution of
threads for 5 seconds.

Multithreading

When two or more processes are executed in a program to simultaneously perform multiple tasks, the
process is known as multithreading.

When we execute an application, the Main thread will automatically be called to execute the
programming logic synchronously, which means it executes one process after another. In this way,
the second process has to wait until the first process is completed, and it takes time. To overcome
that situation, VB.NET introduces a new concept Multithreading to execute multiple tasks at the same
time by creating multiple threads in a program.

Let's write a program of multiple threads to execute the multiple tasks at the same time in the VB.NET
application.

Multi_thread.vb

1. Imports System.Threading

2. Module Multi_thread

3. Sub Main(ByVal arg As String())

4. Dim th As Thread = New Thread(New ThreadStart(AddressOf PrintInfo))

5. Dim th2 As Thread = New Thread(New ThreadStart(AddressOf PrintInfo2))

6. th.Start()

7. th2.Start()

8. Console.ReadKey()

9. End Sub

10. Private Sub PrintInfo()

11. For j As Integer = 1 To 5

12. Console.WriteLine(" value of j is {0}", j)

13. Thread.Sleep(1000)

14. Next

15. Console.WriteLine(" Completion of First Thread")

16. End Sub

17. Private Sub PrintInfo2()

18. For k As Integer = 1 To 5

19. Console.WriteLine(" value of k is {0}", k)

20. Next

21. Console.WriteLine(" Completion of second thread")

22. End Sub

23. End Module

Output:

In the above example, we have created two threads (th, th2) to execute
the PrintInfo and PrintInfo2 method at the same time. And when execution starts, both threads
execute simultaneously. But the first statement of the PrintInfo method is executed, and then it waits
for the next statement until the PrintInfo2 method is completed in the program.

VB.Net - Database Access

Applications communicate with a database, firstly, to retrieve the data stored there and
present it in a user-friendly way, and secondly, to update the database by inserting, modifying and
deleting data.

Microsoft ActiveX Data Objects.Net (ADO.Net) is a model, a part of the .Net framework that is used
by the .Net applications for retrieving, accessing and updating data.

ADO.Net Object Model

ADO.Net object model is nothing but the structured process flow through various components. The
object model can be pictorially described as −

The data residing in a data store or database is retrieved through the data provider. Various
components of the data provider retrieve data for the application and update data.

An application accesses data either through a dataset or a data reader.

 Datasets store data in a disconnected cache and the application retrieves data from it.

 Data readers provide data to the application in a read-only and forward-only mode.

Data Provider

A data provider is used for connecting to a database, executing commands and retrieving data,
storing it in a dataset, reading the retrieved data and updating the database.

The data provider in ADO.Net consists of the following four objects −

Sr.No. Objects & Description

1
Connection

This component is used to set up a connection with a data source.

2
Command

A command is a SQL statement or a stored procedure used to retrieve, insert, delete or
modify data in a data source.

3
DataReader

Data reader is used to retrieve data from a data source in a read-only and forward-only
mode.

4
DataAdapter

This is integral to the working of ADO.Net since data is transferred to and from a
database through a data adapter. It retrieves data from a database into a dataset and
updates the database. When changes are made to the dataset, the changes in the
database are actually done by the data adapter.

There are following different types of data providers included in ADO.Net

 The .Net Framework data provider for SQL Server - provides access to Microsoft SQL Server.

 The .Net Framework data provider for OLE DB - provides access to data sources exposed by
using OLE DB.

 The .Net Framework data provider for ODBC - provides access to data sources exposed by
ODBC.

 The .Net Framework data provider for Oracle - provides access to Oracle data source.

 The EntityClient provider - enables accessing data through Entity Data Model (EDM)
applications.

DATASET

DataSet is an in-memory representation of data. It is a disconnected, cached set of records
that are retrieved from a database. When a connection is established with the database, the data
adapter creates a dataset and stores data in it. After the data is retrieved and stored in a dataset, the
connection with the database is closed. This is called the 'disconnected architecture'. The dataset
works as a virtual database containing tables, rows, and columns.

The following diagram shows the dataset object model −

The DataSet class is present in the System.Data namespace. The following table describes all the
components of DataSet −

Sr.No. Components & Description

1
DataTableCollection

It contains all the tables retrieved from the data source.

2
DataRelationCollection

It contains relationships and the links between tables in a data set.

3
ExtendedProperties

It contains additional information, like the SQL statement for retrieving data, time of
retrieval, etc.

4
DataTable

It represents a table in the DataTableCollection of a dataset. It consists of the DataRow
and DataColumn objects. The DataTable objects are case-sensitive.

5
DataRelation

It represents a relationship in the DataRelationshipCollection of the dataset. It is used to
relate two DataTable objects to each other through the DataColumn objects.

6
DataRowCollection

It contains all the rows in a DataTable.

7
DataView

It represents a fixed customized view of a DataTable for sorting, filtering, searching,
editing and navigation.

8
PrimaryKey

It represents the column that uniquely identifies a row in a DataTable.

9
DataRow

It represents a row in the DataTable. The DataRow object and its properties and
methods are used to retrieve, evaluate, insert, delete, and update values in the
DataTable. The NewRow method is used to create a new row and the Add method adds
a row to the table.

10
DataColumnCollection

It represents all the columns in a DataTable.

11
DataColumn

It consists of the number of columns that comprise a DataTable.

CONNECTING TO A DATABASE

The .Net Framework provides two types of Connection classes −

 SqlConnection − designed for connecting to Microsoft SQL Server.

 OleDbConnection − designed for connecting to a wide range of databases, like Microsoft
Access and Oracle.

Example 1

We have a table stored in Microsoft SQL Server, named Customers, in a database named testDB.
Please consult 'SQL Server' tutorial for creating databases and database tables in SQL Server.

Let us connect to this database. Take the following steps −

 Select TOOLS → Connect to Database

 Select a server name and the database name in the Add Connection dialog box.

 Click on the Test Connection button to check if the connection succeeded.

 Add a DataGridView on the form.

 Click on the Choose Data Source combo box.

 Click on the Add Project Data Source link.

 This opens the Data Source Configuration Wizard.

 Select Database as the data source type

 Choose DataSet as the database model.

 Choose the connection already set up.

 Save the connection string.

 Choose the database object, Customers table in our example, and click the Finish button.

 Select the Preview Data link to see the data in the Results grid −

When the application is run using Start button available at the Microsoft Visual Studio tool bar, it will
show the following window −

Example 2

In this example, let us access data in a DataGridView control using code. Take the following steps −

 Add a DataGridView control and a button in the form.

 Change the text of the button control to 'Fill'.

 Double click the button control to add the required code for the Click event of the button, as
shown below −

ImportsSystem.Data.SqlClient

PublicClassForm1

PrivateSubForm1_Load(sender AsObject, e AsEventArgs) _

HandlesMyBase.Load

'TODO: This line of code loads data into the 'TestDBDataSet.CUSTOMERS' table.

 You can move, or remove it, as needed.

 Me.CUSTOMERSTableAdapter.Fill(Me.TestDBDataSet.CUSTOMERS)

 'Set the caption bar text of the form.

Me.Text="tutorialspoint.com"

EndSub

PrivateSubButton1_Click(sender AsObject, e AsEventArgs)HandlesButton1.Click

Dim connection AsSqlConnection=New sqlconnection()

 connection.ConnectionString="Data Source=KABIR-DESKTOP; _

 Initial Catalog=testDB;Integrated Security=True"

 connection.Open()

Dim adp AsSqlDataAdapter=NewSqlDataAdapter _

("select * from Customers", connection)

Dim ds AsDataSet=NewDataSet()

 adp.Fill(ds)

DataGridView1.DataSource= ds.Tables(0)

EndSub

EndClass

 When the above code is executed and run using Start button available at the Microsoft Visual
Studio tool bar, it will show the following window −

 Clicking the Fill button displays the table on the data grid view control −

Creating Table, Columns and Rows

We have discussed that the DataSet components like DataTable, DataColumn and DataRow allow
us to create tables, columns and rows, respectively.

The following example demonstrates the concept −

Example 3

So far, we have used tables and databases already existing in our computer. In this example, we will
create a table, add columns, rows and data into it and display the table using a DataGridView object.

Take the following steps −

 Add a DataGridView control and a button in the form.

 Change the text of the button control to 'Fill'.

 Add the following code in the code editor.

PublicClassForm1

PrivateSubForm1_Load(sender AsObject, e AsEventArgs)HandlesMyBase.Load

' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 End Sub

 Private Function CreateDataSet() As DataSet

 'creating a DataSetobjectfor tables

Dim dataset AsDataSet=NewDataSet()

' creating the student table

 Dim Students As DataTable = CreateStudentTable()

 dataset.Tables.Add(Students)

 Return dataset

 End Function

 Private Function CreateStudentTable() As DataTable

 Dim Students As DataTable

 Students = New DataTable("Student")

 ' adding columns

AddNewColumn(Students,"System.Int32","StudentID")

AddNewColumn(Students,"System.String","StudentName")

AddNewColumn(Students,"System.String","StudentCity")

' adding rows

 AddNewRow(Students, 1, "Zara Ali", "Kolkata")

 AddNewRow(Students, 2, "Shreya Sharma", "Delhi")

 AddNewRow(Students, 3, "Rini Mukherjee", "Hyderabad")

 AddNewRow(Students, 4, "Sunil Dubey", "Bikaner")

 AddNewRow(Students, 5, "Rajat Mishra", "Patna")

 Return Students

 End Function

 Private Sub AddNewColumn(ByRef table As DataTable, _

 ByVal columnType As String, ByVal columnName As String)

 Dim column As DataColumn = _

 table.Columns.Add(columnName, Type.GetType(columnType))

 End Sub

 'adding data into the table

PrivateSubAddNewRow(ByRef table AsDataTable,ByRef id AsInteger,_

ByRef name AsString,ByRef city AsString)

Dim newrow AsDataRow= table.NewRow()

 newrow("StudentID")= id

 newrow("StudentName")= name

 newrow("StudentCity")= city

 table.Rows.Add(newrow)

EndSub

PrivateSubButton1_Click(sender AsObject, e AsEventArgs)HandlesButton1.Click

Dim ds AsNewDataSet

 ds =CreateDataSet()

DataGridView1.DataSource= ds.Tables("Student")

EndSub

EndClass

 When the above code is executed and run using Start button available at the Microsoft Visual
Studio tool bar, it will show the following window −

 Clicking the Fill button displays the table on the data grid view control −

