
Operating System
Introduction to Operating System

What is an operating system?
- Operating system (OS) is a program or set of programs, which acts

as an interface between a user of the computer & the computer
hardware and acts as resource manager.

- The main purpose of an OS is to provide an environment in which
we can execute programs effectively.

The main goals of the OS are

(i) To make the computer system convenient to use

(ii)To make the use of computer hardware in efficient way.

- Operating System is a system software which may be viewed as
a collection of software consisting of procedures for operating
the computer & providing an environment for execution of
programs.

- It’s an interface between user & computer.

- OS makes everything in the computer to work together
smoothly & efficiently.

OS ROLES

1. Interface 2. Resource Manager

• Interface
– Interface between User and Computer

– The language of user and computer are different.

– OS plays the role of mediator/translator and makes
communication between User and Computer possible.

OS ROLES

• Resource Manager

- There needs a coordination between different
parts of a computer to accomplish a particular task.

- This is made possible by OS. It monitors and
controls every part of the computer.

Operating System Terminologies

User:

A user is anybody that desires work to be done by a computer
system.

Job:

A Job is the collection of activities needed to do the work
required.

Job Steps:

Job Steps are units of work that must be done sequentially.

Once the OS accepts an user’s job, it may create several
processes.

Process:

- A process(or task) is a computation that may be done
concurrently with other computations.

-The following fig depicts the relationship between
user,job,process and address spaces

Multiprogramming:

- A Multiprogramming system may have several processes in
‘state of execution’ at the same time.

- A process is in a state of execution if the computation has
been started but has not been completed or terminated(error
completion).

- Multiprogramming aims to reduce the idle time of processor
during execution of a process.

-Due to mismatch in the speed of processor and other devices
of the computer, many a times processor remains idle in
between execution of a process.

- Processor continues executing another running process which
is currently ready.

Various views of OS

1. Viewing OS as User/Computer Interface

2. Viewing OS as Resource Manager

3. Historical view

4. Functional view

Historical development of OS

(Evolution of OS)

1. Job-by-Job processing

2. Early Batch processing

3. Executive systems

4. Multiprogramming OS

5. Comprehensive Information Management and
Timesharing

6. Virtual storage and virtual machines

7. Consolidation and Refinement

1. Job-by-Job processing

Each programmer operated the computer personally-loading
decks, pushing buttons, examining storage locations, etc.

2. Early Batch processing

To reduce set up time(time to load program and data,
ie.job), monitor programs are developed that allows users to
batch their jobs together which constituted an automatic job
sequencing.

3. Executive systems

When computers became more complex, especially with
regard to I/O device management, executive systems were
developed that permanently resided in memory and
provided Input/Output Control Services(IOCS) for user jobs.

4. Multiprogramming OS

Multiprogramming was used as a technique to enhance
the throughput efficiently. Multiprogramming is most
useful when we have more percentage of I/O oriented
jobs.

5. Comprehensive Information Management and
Timesharing

The concept of direct user interaction via timesharing
techniques was incorporated into several systems.
Sharing processor time among the currently running
processors.

6. Virtual storage

Using part of secondary memory as primary memory to
store instruction and data of programmes in state of
execution and bringing in and out of main memory as
part or whole program.

7. Consolidation and Refinement

Combination of more than techniques like paging, time
sharing, virtual storage, etc came into existence.

Functional view of OS

Most users wish to use the computer only to solve
particular problems.

Such users want only that the system provide them with a
number of packages to assist them in defining and solving
their problems.

Examples:

Assembly language translators, Compilers, Subroutines,
Linkers and loaders, Utility programs, Application packages,
debugging facilities.

- The primary view is that the OS is a collection of programs
designed to manage the system’s resources, namely,

memory

processors

peripheral devices &

File/information.

- It is the function of OS to see that they are used efficiently & to
resolve conflicts arising from competition among the various
users.

An Operating System as Resource Manager
- The OS is a manager of system resources.

- A computer system has many resources.

- Since there can be many conflicting requests for the resources
especially in multiprogramming, the OS must decide which
process to be allocated resources, when and how long to
operate the computer system fairly & efficiently.

-

The Operating system as a resource manager, each manager do the
following.

1. Keep track of the STATUS of resources

2. Enforce policy to determine who gets what , when and
how much

3. Allocate the Resource

4. Deallocate /Reclaim the Resource

The major functions of each category of OS are.

1.Memory Management Functions

-The OS is responsible for the following memory management
functions:

1. Keep track of which segment of memory is in use & by whom and which
parts are free.

2. Deciding policy on which processes are to be loaded into memory when
space becomes available. In multiprogramming environment it decides
which process gets the available memory, when it gets it, where does it get
it, & how .

3. Allocate the memory

4. Reclaim the resource when the process no longer needs it or process has
been terminated.

2. Processor/Process Management Functions

1. Keeps track of processor & status of processes. The program that does this

has been called the traffic controller.

2. Decide policy on which process gets the processor, when and how much.
This is done by process scheduler.

. Allocate the processor to a process. This is done by dispatcher.

5. Deallocate the processor when process relinquishes the processor usage,
terminates.

3. I/O Device Management Functions

-The OS is responsible for the following I/O Device
Management Functions:

1.Keep track of the I/O devices, I/O channels, etc. This module is typically

called I/O traffic controller.

2. Decide what is an efficient way to allocate the I/O resource. If it is to be
shared, then decide who gets it, how much of it is to be allocated, & for
how long. This is called I/O scheduling

3. Allocate the I/O device & initiate the I/O operation.

4. Deallocate the resource

4.Information/File Management Functions

1. Keeps track of the information, its location, its usage,
status, etc. The module called a file system provides these
facilities.

2.Decides who gets hold of information, enforce protection
mechanism, & provides for information access mechanism,
etc.

3.Allocate the information to a requesting process, e.g., open
a file.

4.De-allocate the resource, e.g., close a file

GENERAL DESIGN CONSIDERATIONS

A design procedure for software is based on the
following steps.

• Make a clear statement of the problem

• List the relevant databases

• Specify the format of those database

• Devise an algorithm

• Look for modularity

• Repeat steps (1) through (5) on each module

In case of OS

First Iteration:

Steps 1 through 5 – produce a statement of
the facilities desired to the system.

In step 5- OS is functionally divided into four
managers.

Second Iteration:

would pinpoint the key functions within each
manager (keep track, policy, allocate and deallocate)

Third iteration:

would require the development of algorithms to
perform these tasks.

Fourth iteration:

would involve recognizing basic table maintenance
functions, databases and queue handling.

Implementation tools:

Few tools that greatly improve the
effectiveness of a system’s designer and
implementer are

* high-level languages

* timesharing

* structured programming

Use of high-level language may increase programmer’s clarity
and productivity considerably.

Use of timesharing systems with powerful information
management capabilities provides both rapid and easier
debugging as well as simplified control and maintenance of
the source code module.

The term software factory has been used by several groups to
describe such a facility.

Structured programming is an approach to simplify the
conceptual design of large systems and ease the
implementation and debugging of the system.

I/O Programming ,Interrupt Programming ,Machine
Structure

(I) I/O Programming:

- There are 3 basic components of early computer system:

(i) The CPU

(ii) Main storage Unit(memory)

(iii) I/O devices

These components can be interconnected

- The early systems also contains I/O instructions such as

READ A CARD

PUNCH A CARD

PRINT A LINE

- to operate I/O devices one at a time.

- An ADD instruction may take one ms of CPU time and a READ CARD instruction
500 ms of CPU time .

- The disparity in speeds between the I/O devices and the CPU motivated the
development of I/O Processors(also called I/O Channels)

I/O Channels:

- It provide a path for the data to flow between I/O devices and the main
memory.

I/O Processors:

- They are specialized processing units intended to operate the I/O devices.

- They are much less expensive than a CPU.

- The following fig. shows a computer system with a separate I/O channel for each
device

Types of I/O Channel:

- I/O channels come in all shapes and sizes, ranging from very simple
processors to highly complex CPUs.

- It is costly to use one channel per device so it leads to development of
selector and multiplexor channels.

- multiple devices may be connected to each channel (up to 256 devices
per channel).

(i) Selector channel

- A selector channel can service only one device at a time-i.e., one device
is selected for service.

- These channels are normally used for very high-speed I/O devices, such
as magnetic tapes , disks and drums.

- Each I/O request is completed quickly .

(ii) Multiplexor Channel:

- It simultaneously service many devices(up to 256).

- It is used for slow I/O devices, such as card readers, card punches
and printers.

(iii) Block Multiplexor Channel:

- It allows multiple channel programs for high-speed devices .

- It performs one channel instruction for one device and then,
automatically , switches to perform an instruction for another device,
and so on.

- A typical 370 configuration is given below

(ii) I/O Programming Concepts:

- The CPU communicates with the I/O processor to perform certain
actions such as START I/O and HALT I/O.

- The I/O processor communicate with the CPU by means of
interrupts.

- I/O processor interprets its own set of instructions.

- I/O channel instructions are called I/O commands.

- The program contains set of I/O commands are known as

I/O programs.

(iii) I/O Processor Structure:

* Memory * Register * Data * Instructions
• Memory:

- The basic memory unit is a byte and size is up to 2 24 bytes.

- For addressing , the I/O channels uses a 24-bit absolute address.

• Register:

- The I/O channel has no explicit registers, but does have an
instruction address register and a data counter .

- some I/O devices have internal registers like CPU has.

• Data:

- Primarily, only character data can be handled.

- Some I/O devices may include some types of code conversions on
the data

Eg: code conversions from EBCDIC to BCD

- I/O Processor also uses some data pertaining to the state of an I/O
device and may read and act on this type of data

.

• Instructions:

- There are three basic groupings of I/O commands.

1. Data Transfers: read; read backwards;write;sense

2. Device control: Control(page eject, tape rewind , etc)

3. Branching: transfers of control within the channel program

- The Channel fetches the channel commands

[Channel Command Words(CCW)] from memory and
decodes them according to the following format.

Opcode(bits 0-7):

It indicates the command to be performed

- it actually consists of two parts

2 to 4 - operation bits

4 to 6--modifier bits (varies for each type of device)

Data Address(bits 8-31):

- it specifies the beginning location of the data field referenced by
the command.

Count field:

- it specifies the byte length of the data field.

The data address and count are used primarily for the data transfer-
type commands.

The flag bits further specialize the command. The
principal flags are:

(iv) Special Features of I/O programming:

The channel has an internal register that acts as the
instruction address register.

Also three specific words of memory are used for status
information.

1. Channel Address Word (CAW):

contains the address of the first instruction to be
executed which is referred only during execution of START I/O.

2. Channel Status Word(CSW):

- it is a double word containing coded information
indicating the status of the channel

3. Channel Command Word(CCW):

- fetches the channel commands from the memory and
decides according to the format of the CSW.

The format of CSW

(v) Communication between the CPU and the Channel:

- The CPU and the Channel are usually in a Master/Slave relationship.

- This means that the CPU tells the channel when to start and commands it
to stop or change what it is doing.

- The channel cannot usually start operations unless instructed by the CPU.

-There are 2 types of communications between the CPU and the Channel.

i) CPU to Channel : I/O instructions initiated by the CPU.

ii) Channel to CPU: interrupt initiated by the channel.

- All CPU I/O instructions has the following format

B1 – The Channel numbers

D1 – The Device numbers

- Bits 16-23 of the sum contain the channel address,

- while bits 24-31 contain the device on the channel

- we are mainly concerned with 3 CPU I/O instructions. They
are

* START I/O

* TEST I/O

* HALT I/O

* START I/O(SIO):

- Two items are needed to start I/O:

(i) The Channel and Device number

(ii) The beginning address of the channel program

eg. : SIO X00E-specifies channel number 0 and

device number OE

Location 72-75 in memory contains CAW, which specifies the
start of the channel program.

* TEST I/O (TIO):

The CPU indicates the state of the addressed channel and device
by setting the Condition Code(busy or not).

* HALT I/O(HIO):

Execution of the current I/O operation at the addressed I/O
device and channel is abruptly terminated.

- After executing an SIO or a TIO the CPU gets a condition code of
either:

8 -- ok(not busy)

2 -- busy

1 – not operational

4 – indicates that lot more to tell us in the CSW which was just
stored at location 64.

- The channel status word(CSW) provides the detailed status of an
I/O device or the conditions under which an I/O operation has been
terminated.

- An SIO causes I/O to start only if the channel returns a Condition
code of 8. If any other CC is returned, the channel has rejected the
I/O request.

- Although the I/O interrupt mechanism has some
powerful capabilities, it is not needed to perform simple I/O
processing. Instead by using TIO repeatedly, CPU can come to
know the end of I/O operation.

- But in some I/O operation like printing a line in PRINTER
we find it inefficient.

- It takes 60 ms to print, and there could be 30,000 TIO
instructions executed, because, it takes only one micro second
to execute an TIO(and every time we get CC=2(busy).

- In this situation, interrupt mechanism is more
appropriate.

(vi) I/O Example using Single Buffering:

- We wish to read and print a series of cards.

- One simple strategy is illustrated in the following fig:

- This sample program does not really take advantage of the I/O
channels, because

- whenever the CPU is running, the channels are idle

and whenever a channel is running , the CPU is idle(issuing TIOs).

- Only advantage is that possibility of I/O errors is very minimum.

(vii) I/O Example using double buffering:

- To increase the number of cards processed for minutes, double
buffering technique is used.

- With double buffering , we first read a card into buffer area 1;
then , while printing out this area, we read the next card into buffer
area 2;when we are finished printing buffer area1, we then can
start reading into buffer area 1 and repeat this process

We first read a card into buffer area 1;

Then, while printing out this area, we read the next card into
buffer area 2;

When we are finished printing buffer area 1, we then can start
reading into buffer area 1;

And repeat this process.

(viii) Multiple card Buffering:

- This buffering is useful when we read more than one cards.

- This technique supports maximum 60 cards for reading and
printing at a time.

Unit - II

• Memory Management

• Single contiguous memory management

• Paged Memory Management

• Demand Paged Memory Management

• Segmented Memory Management

• Segmented and Demand Paged Memory Management

• Other Memory Managements

Memory Management:

- It is one of the module of an Operating system.

- It is concerned with the management of primary memory

- The processor directly access the instruction and data from main memory.

Four Functions of Memory Management:

1.Keep track of which segment of memory is in use & by whom.

2. Deciding which processes are to be loaded into memory when
space becomes available.

In multiprogramming environment it decides which process gets the
available memory, when it gets it, where does it get it, & how .

3. Allocate the memory

4.De-allocate the memory when the process terminated.

Memory Management Techniques:

1. Single Contiguous Memory Management

2. Partitioned Memory Management

3. Relocation Memory Management

4. Paged Memory Management

5. Demand-paged Memory Management

6. Segmented Memory Management

7. Segmented and Demand-Paged Memory Management

8. Other Memory Management
- Swapping
- Overlays

Contiguous Storage Allocation:

- Each program had to occupy a single contiguous block of
location.

Non-contiguous storage Allocation:

- A program is divided into several blocks or segments

- These blocks (or) segments may be placed throughout main
storage.

- not necessarily adjacent to each other.

1. Single Contiguous Allocation:

- It is a simple memory management scheme

- The main memory is usually divided into two partitions
* A portion of memory is permanently allocated to the os
* Another one for the user process.

- It requires no special h/w

- There is no multiprogramming

- The Job uses only a porting of the allocated memory.

OS

User Area

Memory

Example:

Memory Size = 256 k Bytes

OS require = 32 k bytes

User Area = 224 k bytes

(1 kb=1024 bytes)

0

31

255

0

31

Boundary Register:

- It contain highest address used by os.

- During the execution of a program , the memory protection hardware
compute every address used in the program with the content of register.

-if the user tries to enter the os, the instruction is intercepted and job
terminates with an appropriate error message.

OS

JOB

Free
Area

0

b

a

c

CPU

a

Bound
Register

(i) Memory Management Functions for Single Contiguous Allocation:

1. keep track of memory
2. determining the policy
3. allocating of memory
4. deallocation of memory

(ii) Hardware Support:

- no special h/w is required for single contiguous allocation .

(iii) Protection through Bound Register:

- we need to protect the os code and data from changes made by
user processes.

- It can be done by using single boundary register built into the
CPU.

Memory production violation interrupt

-This interrupts is generated if an address lies outside

the allocated area.

- On sensing this interrupts the os can terminate the

erroring job.

Example:

32767

Load 1,32761
User job

255 k

32768

0

Free Area

CPU

32767

Bound
Register

Protection violation interrupt
is generated

Reason: 32761 is os area

(iii) A flow chart of a single contiguous Allocation:

(iv) Advantages

– Easy to understand

– Very Simple

– OS require little amount of memory

(v) Disadvantages

– Poor utilization of memory

– Poor utilization of CPU [waiting for I/O]

– Job size is limited

Memory Management Functions for Partitioned Allocation

2.2 Partitioned Allocation

-Main memory is divided into separate memory register or

memory partitions.

- Each partition holds a separate job

-It supporting “ Multiprogramming”

Memory Management Functions for Partitioned Allocation

1. Keeping track of the status of each partition

[Eg: “in use” or “not in use”, size]

2. Determining who gets memory

3. Allocation an available partition of sufficient size is assigned.

4. De-allocation when the job terminates the partition is

indicated “not in use”.

JOB3

JOB1

JOB2

OS

Partition 1

Partition 1

Partition 1

Types of partition

1. Static or Fixed partition specification
2. Dynamic or variable partition specification

1. Static or Fixed partition specification

– The memory is divided into partitions prior to the
processing of any jobs.

– It is similar to multiprogramming with fixed number of
tasks

– The degree of multiprogramming based on number of
partition.

(a) Fixed partitioning with equal size
(b) Fixed partitioning with variable size

(a) Fixed partitioning with equal size

– Memory is divided into fixed number of partitions with
equal size.

– In this case, any process whose size is less than or equal
to partitioned size can be loaded into memory.

OS OS

150 kb

150 kb

150 kb

150 kb

150 kb

750 kb is divided into five regions
with equal size

(b) Fixed Partitioning with variable size:

- the memory is divided into Fixed number of
partitions with unequal size.

OS

125 kb

95 kb

75 kb

155 kb

250 kb

750 kb is divided into five regions
with unequal size

(iii) Advantages

– Multiprogramming

– Efficient CPU utilization

(iv) Disadvantages

– If there is a job whose memory requirement is more
than that of any partition, then the job cannot be run

ie. Job size<= partition size

– Poor memory utilization

Process Memory

P1 100 kb

P2 95 kb

P3 100 kb

P4 40 KB

P5 10 KB

OS

125 kb

95 kb

75 kb

155 kb

P1(100kb)

JOB QUEUE

P2(95kb)

Free(unused)

Free(unused)

P3(100kb)

Free(unused)

P4(40kb)

P5(10kb)

Free(unused)

Free(unused)

250 kb

This Technique is
appropriate when
the sizes and
frequency of the jobs
are well known

2. Dynamic Partition Specification:

(or) Variable partition Specification:

- it is also called MVT[Multiprogramming with a variable number of
task]

- The partitions are created during job processing.

- The partitions are of variable length and number.

- The operating system keeps a table indicating which parts of
memory are available and which parts are occupied.

size -- indicate the size of region or partition

location - indicate the starting location of partition

status -- indicate whether corresponding entry is current in

use or not in use

- initially , all memory is available for user processes, and is considered
as one large block of available memory.

Allocated Partition Status
table

UnAllocated Area
Status table

Size Location Status Size Location Status

- When a process arrives and needs memory, we search for

hole large enough for this process.

- If we fine one, we allocate only as much memory as is needs.

OS

0

400k

2560k

2160k

Available Memory = 2560k
OS = 400 k
User Process = 2160k

Process Memory

P1 600k

P2 1000k

P3 300k

P4 700k

P5 500k

Job Queue

0

400k

2560k

OS

P1

P2

P3

2000k

2300k

1000k

Free
Area

OS

0

400k

P1

1000k

2000k

2300k

2560k

Free
Area

P3

Free
Area

Allocate memory to
p1,p2 and p3

Process p2 terminates and
releasing its memory

P2 Terminates

0

400k

OS

P1

P4

P3

2000k

1000k

Free
Area

2300k

2560k

P4 Allocate

Free

0

400k

OS

P4

P3

2000k

1000k

Free
Area

2300k

2560k

P1 Terminate

Free

Free

Allocate Process P4 Process P1 terminates and
releasing its memory

0

400k

OS

P4

P3

2000k

1000k

Free
Area

2300k

2560k

P5 Allocate

Free

P5

Process P5 is scheduled

Allocation Scheme:

- As Processes enter into system, they are put into the queue.

- The os determining the amount of available memory and
memory requirements of each process.

- Determining which process are allocated to memory

- After that , the process is loaded into memory.

- When the process terminates then it release its memory

Placement Algorithms:

1 . First Fit Partition Algorithm

2 . Best Fit Partition Algorithm

1. First Fit Partition Algorithm:

- Allocate first hole that big enough.

- Searching can start at the beginning of set of holes.

- We can stop searching as soon as we find a free hole that
is large enough.

Start Address Length

a 16k

c 14k

e 5k

g 30k

Free Storage List Queue

Job request
For 15k

Main Memory

os

In use

5 k hole

In USE

30k hole

14 k hole

IN USE

16 k hole
a

b

c

d

e

f

g

h

Free

Free

Free

Free

Disadvantages:

-Memory Spaces is wasted
highly

- Poor utilization of memory

2. Best Fit Partition Algorithm

- Allocate the smallest hole that is big enough

- We must search the entire list, and select the
best hole that is fit for job.

- This produces smallest leftover hole.

Free Storage List

Start
Address

Length

e 5k

c 14k

a 16k

g 30k

Queue

Job request for 13 k

os

In use

5 k hole

In USE

30k hole

14 k hole

IN USE

16 k hole

a

b

c

d

f

e

g

Flow chart:

Problems in Partitioned Allocation:

- The main problem in the partitioned allocation is “memory

fragmentation”

Memory Fragmentation:

- It implies that the existence of unusable memory areas in a
computer system.

Types of Fragmentations:

(i) Internal Fragmentation

(ii) External Fragmentation

(i) Internal Fragmentation:

- The allocated memory may be slightly larger than the
requested memory

- The difference between these two numbers is “internal
fragmentation”.

- The memory that is internal to a partition, but is not being
used.

Ex:

job requires

80k
OS

50k

150k

210k

256k

0k OS

50k

150k

210k

256k

0k

Internal
Fragmenta
tion[20kb]

- 20k bytes of the memory allocated to job A is currently

unused

- it cannot be allocated to any other job

- this situation is called internal fragmentation.

(ii) External Fragmentation:

- External Fragmentation exists when enough total memory

space exists to satisfy a request, but it is not contiguous;

storage is fragmented into larger number of holes.

400k

1000k

1700k

2300k

0k
OS

2000k

2560k

300k

260k

E xternal
Fragmentation

Process Memory

P5 5ook
This space is large enough to run process
P5 but the free space is not enough

Advantages and Disadvantages of Partitioned Allocation:

Advantages:

1. allows multiprogramming

2. efficient utilization of CPU

3. does not require any special costly hardware

4. algorithm is simple and easy to implement

Disadvantages:

1. Fragmentation

2. It requires more memory than a single contiguous allocation

system.

3. a jobs partition size is limited to the size of physical memory.

2.3 Relocatable Partitioned Memory Management:

Memory Compaction:

-an one solution to the fragmentation problem is to

periodically combine all free areas into one contiguous area.

-this can be done by moving the contents of all allocated

partition.

- this process is called “compaction”

Example:

400k

1000k

1700k

2300k

0k
OS

2000k

2560k

P1

P4

P3

Before Compaction

400k

1000k

1700k

0k

2000k

2560k

P1

P4

P3

After Compaction

Compaction

560k
Free

OS

- moving a job’s partition doesn’t guarantee that the job will still run
correctly as its new location.

-This is because there are many location-sensitive items, such as:
(1) base registers
(2) memory referencing instructions
(3) parameter lists
(4) data structures

- the above sensitive items uses address pointers

- to operate correctly, all location, sensitive items must be suitably
modified

- for example, in the above figure, P3 is moved from location 2000k to
1700k

- all addresses within the P3 partition must be decreased by 300k

- This process of adjusting location sensitive addresses is called
“Relocation”

Problems in Relocation:

- Relocation of job partition can be quite difficult

Reason:

- It is very difficult for an OS to identify the address pointer
that must be altered.

- For example, if the number 36400 appeared in P3
partition it is very difficult to indentify whether it is an address
pointer to be relocated or variable value.

Solution to Relocation Problem:

Solution 1:

Reload all jobs to be relocated and restart them from the
beginning[But it is insufficient because of the computation
may have to be repeated.

Solution 2:

Mapped Memory

Two approaches to the Relocation Problem:

1. Data Typing Concepts

2. Dynamic Relocation concept

1. Data Typing concept:

- Physically records the type of value stored in every memory location

Example:

add 2 bits to every word to designate the value type

Eg: 00= integer
01= floating point number
10 = character
11 = Address pointer

- These bits are automatically set by h/w

A=B not only sets A to the value B but also copies the type of
information

- In this case , we have to easily identify the address pointer
and then manipulated during relocation

Disadvantages:

1. It requires extra bits on every word

2. compaction may be slow.

2 . Dynamic Relocation concept:

- This method uses two special Privileged Registers such as,

* Base Relocation Register

* Bounds Register

- It can be accessed only by the operating system.

- on every memory reference, the content of the base
relocation register is automatically added to the effective
address

- The effective address is the final reference address computed
by the processor.

Effective Address:

- It is the final reference address computed by the processor

OS

JOB1 (8K)

FREE[32K]

JOB4(24K)

FREE[128K]

JOB5 [128K]

JOB[256K]

FREE[136K]

OS

JOB1(8K)

JOB4 (24K)

JOB5 (128K)

JOB(256K)

FREE (296K)

312k

0

320k

352k

376k

504k

632k

888k

1024k

Compaction

312k

0

320k

344K

472K

728K

1024K

Before Compaction After Compaction

Load 1, 370248

015571

FREE[128K]

352k

360800

370248

376k

370248 00000 Load 1, 370248

015571

352k

360800

370248

376k

0

1024k

Relocation
Register

Effective
Address

Memory
Side

Processor
Side

A. Before Reallocation

+

Job 4’s
Address Space

Physical Memory

Jo
b

 4
’s

P

ar
ti

ti
o

n

Load 1, 370248

015571

FREE[128K]

352k

360800

370248

376k

370248 -32768
Load 1, 370248

015571

352k

360803k

337480

344k

0

1024k

Relocation
Register

Effective
Address

Memory
Side

Processor
Side

B. After Reallocation

+

Job 4’s
Address Space

Physical Memory

Jo
b

 4
’s

P

ar
ti

ti
o

n

The instruction LOAD 1, 370248 at 360800 will load the value 015571
into register 1.

After relocation

• The LOAD instruction is at location 328032

• The effective address for the data to be loaded is still 370248 even
though the data value has been moved to 337480.

• To produce correct result, the operating system must set the
relocation register to -32768 (320K-352K=-32K)

• When the instruction LOAD 1, 370248 is encountered.

• -32768 is automatically added to the effective address, 370248, to
determine the actual physical memory location to be accessed
(370248-32768=337480).

• This relocation adjustment is done automatically as each instruction
is executed, it is called “dynamic relocation”.

Software Algorithm:

Flowchart for relocation partition allocation

Request to allocate
partition of size XK

Is there a
free area≥

XK
?

Is the sum
of all free
areas ≥ XK

?
Unable to

allocate partition
at this time

Compact memory and update tables
correspondingly (There is now a single free

area ≥ XK)

Allocate partition
and update tables

Return with
partition
number

yes

No

yes

No

Advantages

• It eliminates fragmentation
• This allows multiprogramming
• Increased memory and processor utilization

Disadvantages
• Relocation hardware increase the cost of the computer and may

slow down the speed

• Compaction time may be substantial

• Some memory will still be unused

• Memory may contain information that is never used. Job’s
partition size is limited to the size of physical memory

2.4 Paged Memory Management

• Each Job’s address space is divided into equal pieces, called

pages.

•Likewise, physical memory is divided into pieces of the same size

called block.

• The hardware to perform the mapping from address space to

physical memory there must be a separate register for each page.

These register are often called Page Maps or Page Map Table (PMTs)

• Since each page can be separately located, there is no need for a

job’s partition to be completely contiguous in memory, only locations

in a single page must be contiguous

Process Memory

Job 1 2000 B

Job 2 3000 B

Job 3 1000 B

Job 4 2000 B

• Job2 has an address space of 3000 bytes is

divided into 3 pages

• The Page Map Table associated with Job2

indicates the location of its pages

In this case:

 Page 0 is in block 2

 Page 1 is in block 4

 Page 2 is in block 7

Page Number Block Number

0 2

1 4

2 7

PMT(Page Map Table)

•The LOAD 1, 2108 instruction at location 0518 (page0, byte 518) in Job

2’s address space is actually stored at physical location 2518 (block 2,

byte 518).

•Likewise, the data 015571 logically located at address space -2108 is

stored at physical memory location 7108.

Advantages:

The paged memory management approach solves the

fragmentation problem without physically moving partitions.

Example:

Remaining there are 2000 bytes of available memory, but they are

not contiguous.

We can assign Job4’s into two pages and assign these pages to the

available block. Such as

OS

FREE

FREE

1000

0

3000

4000

9000

10000

0 3

1 9

Page Map

Table Job 4’s

Address Space

Page 1

Page 0

Page 0 = block 3 and Page 1= block 9

Physical Memory

Four functions of Paged Memory Management:

•Keeping track of status – accomplished through two sets of tables:

a. Page Map Tables – One entry for each page

a. Memory Block Tables – One entry for each memory block (eg: allocated or

available)

•Determining who gets memory- this is largely decided by the Job scheduler

•Allocation all pages of the job must be loaded into assigned blocks.

•Deal location-when the job is done, blocks must be returned to free

Hardware Support:

A hardware mechanism is needed to perform the mapping from

each instructions effective address to the appropriate physical memory

location

1. High – Speed Page Map Registers:

This scheme can be made attractive in several ways:

•First, if the Job’s address space is limited such as l00 k bytes, no

more than 25 registers will needed for each Job’s address space.

•Second since only one job is running at a time only one set of

hardware page mapping register will be needed.

Disadvantage:

•Continuous resetting when multiprogramming.

•Cost is very high

2. Page Map Table

•Page Map Tables used to eliminate continuous resetting.

•To simplify address mapping the page is usually chosen to be a power of

two (eg:1024(1k) bytes, 2048(2kb) or 4096(4kb)

•The DAT(Dynamic Address Transaction) mechanism automatically

separates the effective address into two parts

Bits 8 through 19 become the 12 bit page number

Bits 20 through 31 become the 12 bit byte number.

•Use PMT the page number is replaced by the block number to produce

the resultant physical memory address to be used.

•When the processor is switched to new job, only the PMTAR (Page

Map Table Address Register) has to be changed to indicate the location

of the new Job PMT.

•The computer would run at about half its normal speed.

3. Hybrid Page Map Table:

- A hybrid scheme, combining aspects of the high-speed mapping

registers and the PMTs is often used to overcome this speed problem.

- A small number of special high-speed registers are used to hold

portions of the PMTs.

- Whenever possible , these registers are used to dispose with

accessing the PMT in memory.

-These special registers are often called an associative memory or

a table look-aside buffer.

Page
Number

Block
Number

0 2

1 4

2 7

Advantages:

(1) It eliminates Fragmentation

(2) It allows multiprogramming

(3) The relocation partition scheme is also eliminated

Disadvantages:

(1) Mapping h/w increase the cost

(2) using various tables PMT,MBT, etc…

(3) Internal fragmentation occur. Half a page is wasted for each

job.

(4) some memory will still be unused.

5. Demand Paged Memory Management:

- In all the previous schemes a job could not be run until there was
sufficient available memory.

- These problems could be solved by using extremely large main
memory.

- The OS to produce the illusion of an extremely large memory. It is
called Virtual Memory

There are Two Virtual Memory Techniques:

1. Demand Paged Memory Management
2. Segmented Memory Management

Example:
- consider the following figure, three jobs are loaded in memory
- fourth job requires 4000 bytes (i.e.) it needs four block, but only two

blocks are available
- here , we can load only two pages of job4

Two Key questions remain to be answered:

(1) What do we do if a job references an area of space not in
physical memory.

(2) How do we decide which pages to keep in memory?

Note in above Fig:

- The ADD 1, 2410 instruction at location 104 in Job 4 references a
page that is not in memory

- To handle this case, the PMT h/w to include a status

Y= yes , reference is ok

N= no, reference is impossible

- if the address mapping h/w encounters a page table entry with
status=N, it generates a Page Interrupt.

- The OS must process this interrupt by loading the required page
and adjusting the page table entries correspondingly.

- We say this page was loaded on demand

- This scheme is called “Demand Paged Memory Management”.

- when a job is initially scheduled for execution, only its first page is
actually loaded. All other pages needed by the job are subsequently
loaded on demand.

- This guarantees that an unnecessary page is not loaded.

Thrashing:

- only memory has becomes filled with pages it is possible to load another
page only by first removing one of the pages presently in memory.

- The replaced page is copied back onto the secondary storage device
before the new page is loaded. i.e. the two pages swap places between
main memory and secondary storage.

-Moving pages back and forth between main memory and second memory
has been called “Thrashing”.

secondary storage device

0

1000

3000

2000

4000

Page Status Block

1 Y 3

2 Y 9

3 N -

4 N -

Page Map Table

Job 1

Location 5000

Location 6000

0

1000

2000

Job 4’s
Address Space

OS
0

2000

3000

4000

5000

6000

7000

8000

9000

11000

Two pages, removed from
Physical memory and

copied on to the secondary
storage device

Page Interrupt Generates

Physical memory

The OS software is making these page replacement decisions.

0

1000

3000

2000

4000

Page Map Table

Job 1

Location 5000

Location 6000

0

1000

2000

Job 4’s
Address Space

OS
0

2000

3000

4000

5000

6000

7000

8000

9000

11000

After
completing

this two
pages, Job I

will be
reloaded

from
secondary

storage
device

Page Status Block

1 Y 3

2 Y 9

3 Y 5

4 Y 6

Four function of Demand-Paged Memory Management:

1. Keeping track of status – this is accomplished through three sets
of tables:

• Page Map Tables
• Memory Block Tables
• File Map Tables

2. The policy of who gets memory and when, how long.

3. Allocation of Block

4. Deallocation of a Block, when a job terminates

Hardware Support

The address mapping hardware Via Page Map Table needed for demand
paging.

1. A status bit in the PMT to indicate whether the page is in main
memory or secondary storage.
 Status =Y Physical memory
 Status =N Secondary memory

2. Interrupt action to transfer control to the OS. If the job attempts to
access a page not in main memory.

3. Record of individual page usage to assist the os in determining
which page to remove, if necessary.

Software Algorithm

1. File Map Requirement:

• Demand-Paged memory management must interact with
information management to access and store copies of the Job’s
address spaces on secondary storage.

• Each page has a unique secondary storage address called its file
address. This address logically is part of each PMT entry

Block Number I File Address

0 11 12 1314 15 16 31

I=0 means page available in main memory.

I=1 means page available in secondary storage device

• The file information is usually stored in a separate table called the
File Map Table.

• The relationship of the File Map Table to the Page Map Table and
the Memory Block Table is illustrated in the following diagram.

• In this diagram Job 2 has only two of its three pages in main memory

• A copy of all pages is available on a secondary storage

Operating System

Operating System

Job 2, Page 0

Available

Job 2, Page 1

Job 1, Page 0

Job 1, Page 1

Available

Job 3, Page 0

Available

OS
1

2

3

4

5

6

7

8

9

Physical memory 2 0

4 0

0

4K

8K

12K

Page 1

Page 0

Page 2

secondary storage device

Page Map Table

Page Block I

File Map Table
(Job 2)

File Address

0

1

2

0

1

2

Page

0

4k

8k

12k

16k

20k

24k

28k

32k

36k

40k

2. Overview of Page Interrupt Processing

• In previous memory management schemes, allocation of memory
was completely static. That is memory was allocated or rearranged
only when a job started or terminated.

• In demand paging, it is necessary to allocate and deallocate memory
during the job’s execution. The memory management routines are
involved by means of the page interrupt.

3. Interaction between hardware and software

• In demand paging there is very close interaction between the
hardware and software, which is illustrated in the following
flowchart.

• The first part of the flowchart is implemented as part of the address
mapping hardware

• The second part is implemented as an interrupt handler routine
within the operating system.

Page
Interrupt

Start Processing instruction

Generate data address

Compute Page number

Get page no needed

Get disk address from file map

Record page in

Adjust block and page tables

Restart interrupted instruction

Is that page in
memory ?

Was page
changed

?

Is there a
free block ?

Select Page to remove

Adjust block/page tables

Write page
block onto disk

Adjust to next
Instruction

Fetch data and
complete the

Instruction

yes

yes

yes

No

No

No

Hardware

software

Page Removal Algorithm

There are 3 schemes for replacement algorithm

1. FIFO(First In First Out)

• The oldest Job will be removed

2. LRU(Least Recently Used)

• Removes the page that has been in memory for the
largest time.

3. Tuple – Coupling

• The smallest pages will be removed

Advantages

1. Fragmentation is eliminated

2. Compaction is not needed

3. Large virtual memory

4. More efficient use of memory

5. Unconstrained multiprogramming

Disadvantages

1. The number of tables and amount of processor overhead for
handling page interrupt

2. Under extreme thrashing situations over 99% of processor time
may be consumed by overhead activities and less than 1% by
user jobs

3.Processor Management

-It is concerned with the management of the physical

processor

-The assignment of processors to processes

3 Important topics in this chapter:

i) Job scheduling (Macro scheduling):

-It is used to choosing which jobs will run.

-It is concerned with the management of jobs.

ii) Process scheduling (Micro scheduler):

-It is used to assigning processors to the processes

associated with scheduled jobs.

-It is concerned with the management of processes

iii) Traffic Controller:

-Keep track of status of all processes

-Providing the mechanism for changing process – states

-co-ordinate inter process synchronization &

communication

3.1 State Model

Totally we have 6 states, there are:

i) Submit state

ii) Hold state

iii) Ready state

iv) Running state

v) Blocked state/ Waiting state

vi) Completed state

Job Scheduler Process Scheduler

Traffic Controller

Waiting

Submit Hold Ready Running Completed

i) Submit state:

- Program or instruction code submitted into the

computer

ii) Hold State:

- Job scheduler could examine whether all

processors available to process some

processes

iii) Ready state:

- Job Scheduler set up a processor to each

processes

iv) Running state:

-Process was finally assigned a processor to

execute the program or instruction code

v) Blocked state / Waiting state:

- process scheduler gave particular time quantum to
each processor

- if it is finished, process initiated another I/O process

- The processor had to wait until I/O was completed. It is
namely called as blocked state

- Traffic Controller is used to change from the blocked
state to ready state.

vi) Completed state:

- Process Scheduler assigned a processor to a process
and if it finished, it will come to completed state.

Here we have 3 important topics:
i) Job scheduler

ii) process scheduler

iii) job and process synchronization

i) Job scheduler:

1) Keep track of status of all jobs(whether it is hold,
ready, running or blocked state)

2) choose the policy by which job will “ enter the
system”

3) Allocate the necessary resources

4) Reallocate these resources when the job is done.

ii) Process scheduling:

1) Keep track of status of the process

2) Deciding which process gets a processor and for how long

3) Allocate of a processor to a process

4) Reallocate these processor to a process, when it terminates

iii) Job & Process synchronization:
Intermixed:

-One process requests a printer while another process is printing, if
the printer were to be also assigned to the second process, it will
produce intermixed between the two processes

Deadlock:

-There are two processes, each of which is waiting for resources
that other will not give up.

The P & V operator and semaphores:

-They are one set of mechanisms for coordinating the assignment of
processors to processes

3.2 JOB SCHEDULING

-It is uses scheduling time, priority, memory needs, device
needs, processor needs, and synchronization

Functions:

1) Keep track of the jobs

2) invoke policies for deciding which jobs get resources

3) Allocate the resources

4) De-allocate the resources

Job Control Block:

-Each job have its own Job Control Block

-Priority and time estimation is obtained from the Job

control card submitted with the job

-Current state is set by the operating system

OS

Job control card

Policies:

-The job scheduler must choose from among the “hold” jobs.

Job identification

Current state

Priority

Time estimate

Ect..

Typical considerations one must deal with in determining a job
scheduling policy are:

1) Availability of special limited resources

2) Cost-higher rates for faster service

3) System commitments – processor time and memory - the more you
want, the longer you wait

4) System balancing – mixing I/O-intensive and CPU-intensive

5) Guaranteed service - setting a specific waiting time limit(1hr) or general
wait limit (within 24 hr) (at least don’t lose the job)

6) Completing the job by a specific time

a) Job scheduling in Non-multiprogramming

Environment:

-Once a processor has been assigned a process,

it does not release the processor until it is

finished.

i) Job scheduling using FIFO:
Sample Table:

Job

No

Processing

Time

Arrival

Time (Ai)

Start

time

Finish

Time (Fi)

Turn

arround

Time

(Ti)=Fi-Ai

1 2.00 hr 10.00 10.00 12.00 2.00

2 1.00 hrs

3 0.25 min

a) Job scheduling in Non-multiprogramming

Environment:

-Once a processor has been assigned a process,

it does not release the processor until it is

finished.

i) Job scheduling using FIFO:
Sample Table:

Job

No

Processing

Time

Arrival

Time (Ai)

Start

time

Finish

Time (Fi)

Turn

arround

Time

(Ti)=Fi-Ai

1 2.00 hr 10.00 10.00 12.00 2.00

2 1.00 hrs 10.10 12.00 13.00 2.90

3 0.25 min 10.25 13.00 13.25 3.00

7.90

-If we use a FIFO algorithm, the jobs will

be run as depicted in FIFO manner

-Average Turn around time

T=(Ti) X

where Ti=Fi-Ai

Fi – Finish time

Ai – Arrival time

T = = 2.63 hrs

 n

i
n1

390.7

ii) Job scheduling using Shortest Job First:

Job

No

Processing

Time

Arrival

Time (Ai)

Start

time

Finish

Time (Fi)

Turn

arround

Time

(Ti)=Fi-Ai

1 2.00 hr 10.00 10.00 12.00

2 1.00 hrs 10.10 12.25 13.25

3 0.25 min 10.25 12.00 12.25

-Average Turn around time T=7.15 / 3 = 2.38 Hrs

Job1

Job3

Job2

Job

No

Processing

Time

Arrival

Time (Ai)

Start

time

Finish

Time (Fi)

Turn

arround

Time

(Ti)=Fi-Ai

1 2.00 hr 10.00 10.00 12.00 2.00

2 1.00 hrs 10.10 12.25 13.25 3.15

3 0.25 min 10.25 12.00 12.25 2.00

7.15 hrs

ii) Job scheduling using Shortest Job First:

- When Job1 arrives, it is run

- While Job1 running Job2 and Job3 arrive

- We choose to run Job3 next because it has

a shorter run time than Job2

- Algorithm did reduce the average turn

around time

- Also we can reduce average turn arround

time, that is to run Job3 first, next to run

Job1 and then Job2

Job3

Job2

Job1

Job

No

Processing

Time

Arrival

Time (Ai)

Start

time

Finish

Time (Fi)

Turn

arround

Time

(Ti)=Fi-Ai

1 2.00 hr 10.00

2 1.00 hrs 10.10

3 0.25 min 10.25

Job3

Job1

Job2

Job

No

Processing

Time

Arrival

Time (Ai)

Start

time

Finish

Time (Fi)

Turn

arround

Time

(Ti)=Fi-Ai

1 2.00 hr 10.00

2 1.00 hrs 10.10

3 0.25 min 10.25 10.25 10.50 2.00

Job3

Job1

Job2

Job

No

Processing

Time

Arrival

Time (Ai)

Start

time

Finish

Time (Fi)

Turn

arround

Time

(Ti)=Fi-Ai

1 2.00 hr 10.00

2 1.00 hrs 10.10 10.50 11.50 3.15

3 0.25 min 10.25 10.25 10.50 2.00

Job3

Job1

Job2

Job

No

Processing

Time

Arrival

Time (Ai)

Start

time

Finish

Time (Fi)

Turn

arround

Time

(Ti)=Fi-Ai

1 2.00 hr 10.00 11.50 13.50 2.00

2 1.00 hrs 10.10 10.50 11.50 3.15

3 0.25 min 10.25 10.25 10.50 2.00

7.15 hrs

CPU idle =0.25 hrs

-Average Turn around time T=5.15 / 3 =1.72 hrs

-We did reduce average turn around time, but we
wasted 0.25 hrs of CPU time.

Job

No

Processing

Time

Arrival

Time (Ai)

Start

time

Finish

Time (Fi)

Turn

arround

Time

(Ti)=Fi-Ai

1 2.00 hr 10.00 11.50 13.50 3.50

2 1.00 hrs 10.10 10.50 11.50 1.40

3 0.25 min 10.25 10.25 10.50 0.25

5.15 hrs

iii) Measure of scheduling performance:

i) Average Turn around time T= Ti / n

ii) Weighted turn around time W = T /R

T – Turn around Time

R – Actual run Time

b) Job scheduling in Multiprogrammed Environment:

-Round robin algorithm is used to assigned a
processor for some small time quantum

-That is, if n jobs are running simultaneously,
they each get an equal share of run time.

i) Job scheduling with multiprogramming But no
I/O Overlap:

Graphical Representation:

5 x

4 x

3 x

2 x

1

10.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 11 .1 .2 .3 .4

Job No Arrival Time Run Time (R)

1 10.0 0.3 hr

2 10.2 0.5 hr

3 10.4 0.1 hr

4 10.5 0.4 hr

5 10.8 0.1 hr

FIFO – no multiprogramming:

Job no Arrival Time

(Ai)

Start Time Finish

Time

(Fi)

Turn

around

time

Ti=Fi-Ai

Weighted

Turn around

time W= T / R

T—Turn

Around Time

R –Actual

time

1 10.0 10.0 10.3 0.3 (0.3 /0.3)

2 10.2 10.3 10.8 0.6 (0.6 / 0.5)

3 10.4 10.8 10.9 0.5

4 10.5 10.9 11.3 0.8

5 10.8 11.3 11.4 0.6

FIFO – no multiprogramming:

Job no Arrival Time

(Ai)

Start Time Finish

Time

(Fi)

Turn

around

time

Ti=Fi-Ai

Weighted

Turn

around

time W= T

/ R

1 10.0 10.0 10.3 0.3 0.3 / 0.3

2 10.2 10.3 10.8 0.6 0.6 / 0.5

3 10.4 10.8 10.9 0.5

4 10.5 10.9 11.3 0.8

5 10.8 11.3 11.4 0.6

FIFO – no multiprogramming:

Total = 2.8 hrs 15.20 hrs

-Average turn around time T =2.8 / 5 = 0.56

-Weighted average turn around time W = 15.20 / 5
=3.04

Job no Arrival Time

(Ai)

Start Time Finish

Time

(Fi)

Turn

around

time

Ti=Fi-Ai

Weighted

Turn

around

time W= T

/ R

1 10.0 10.0 10.3 0.3 1.00

2 10.2 10.3 10.8 0.6 1.20

3 10.4 10.8 10.9 0.5 5.00

4 10.5 10.9 11.3 0.8 2.00

5 10.8 11.3 11.4 0.6 6.00

FIFO with multiprograming:

CPU Headway:

-It is the amount of CPU time spent on a job.

-If 2 jobs are being multipogrammed, each job’s CPU
headway will be equal to half of the clock time
elapsed.

-Average turn around time is .56 without multiprogramming

- And .6 with multiprogramming

- Note that average weighted turn around time improve.

Time Event No.of

Jos

(NJ)

CPU per

job

(1/NJ)

Elapsed

time

(ET=CT-PT)

Headway

per job
(HW=ET/NJ)

Job Time left

(TL =TL-

HW)

10.0 Jo1

arrives

1 .3

10.2 Job 2

arrives

1 (1/1) .2

(10.0-10.2)

.2

(.2/1)

1

2

.1(.3 - .2)

.5

Time Event No.o

f

Jos

(NJ)

CPU

per

job

(1/NJ)

Elapsed

time

(ET=CT-PT)

Headway

per job
(HW=ET/NJ)

Job Time left (TL

=TL-HW)

10.4 Jo3

arrives

Job 1

Termin

ates

2 (1/2) .2

(10.4 -10.2)

.1

(0.2/2)

1

2

3

-

.4 (.5 - .1)

.1

10.5 Job 4

arrives

2 (1/2) .1

(10.5 -10.4)

0.05

(0.1 /2)

2

3

4

.35 (.4 - 0.05)

.05 (.1– 0.05)

.4

10.65 Job 3

termina

tes

3 (1/3) .15

(10.65 -10.5)

0.05

(0.15 /3)

2

3

4

.3 (.35 - 0.05)

- (0.05– 0.05)

.35(.4-0.05)

10.8 Job 5

arrives

2 (1/2) .15

(10.8 -10.65)

0.075

(0.15/2)

2

4

5

.225(.3-075)

.275(.35-

0.075)

.1

Time Event No.o

f

Jos

(NJ)

CPU

per

job

(1/NJ)

Elapsed

time

(ET=CT-PT)

Headway

per job
(HW=ET/NJ)

Job Time left (TL

=TL-HW)

11.1 Jo5

Termin

ates

3 (1/3) .3

(11.1 -10.8)

.1

(0.3/3)

2

4

5

.125(.225-.1)

.175(.275-.1)

- (.1 - .1)

11.35 Job 2

termina

tes

2 (1/2) .25

(11.35 -11.1)

.125

(0.25 /2)

2

4

- (.125- .125)

.05 (.175– .125)

11.4 Job 4

termina

tes

1 (1/1) .05

(11.4 -

1.135)

0.05

(0.05 /1)

4 -(0.05 – 0.05)

No.of

Jos

(NJ)

Run time (R

)

Start

time

(Si)

Finished

time (Fi)

Tun around

time

T=(Fi-Si)

Weighted Turn around

time W= T/R

1

2

3

4

5

0.3

0.5

0.1

0.4

0.1

10.0

10.2

10.4

10.5

10.8

10.4

11.35

10.65

11.4

11.1

No.of

Jos

(NJ)

Run time (R

)

Start

time

(Si)

Finished

time (Fi)

Tun around

time

T=(Fi-Si)

Weighted Turn around

time W= T/R

1

2

3

4

5

0.3

0.5

0.1

0.4

0.1

10.0

10.2

10.4

10.5

10.8

10.4

11.35

10.65

11.4

11.1

0.4

1.15

0.25

0.9

0.3

1.33 (0.4 / 0.3)

2.3 (1.15 / 0.5)

2.5 (0.25 / 0.1)

2.25 (0.9 / 0.4)

3.0 (0.3 / 0.1)

No.of

Jos

(NJ)

Run time (R

)

Start

time

(Si)

Finished

time (Fi)

Tun around

time

T=(Fi-Si)

Weighted Turn around

time W= T/R

1

2

3

4

5

0.3

0.5

0.1

0.4

0.1

10.0

10.2

10.4

10.5

10.8

10.4

11.35

10.65

11.4

11.1

0.4

1.15

0.25

0.9

0.3

1.33 (0.4 / 0.3)

2.3 (1.15 / 0.5)

2.5 (0.25 / 0.1)

2.25 (0.9 / 0.4)

3.0 (0.3 / 0.1)

3.00 11.38

Average Turn around time T = Ti/n = 3.00 / 5 = 0.6

Average weighted turn around time W = 11.38 / 5 = 2.276

3.4 Process scheduling
-Once the job scheduler has selected job to run, it

creates one or more process for this job

-The process scheduler does the assignment of

processor to processes.

-It is also called as the dispatcher or low level

scheduler.

Job 1

Job 2

Job 3 Job 3 Divide the

Job 4 into

No of processes

OS

Process A

Process B

Process C

Job

scheduler

ProcessorProcess

Scheduler

Functions of Process Scheduling:

1) Keep track of the status of the process

(ready, run or wait state)

2) Deciding which process gets a processor

and for how long

3) Allocate processors to processes

4) De allocate processors from processes

Process Control Block:

-The traffic controller keeps track of the status

of the processes by maintaining a database

associated with each process in the system

called PCB

-It contains entries like process

identification, current state,

priority, etc.

-All PCS’s in the same state are

linked together & forming a ready

list, wait list, etc.

Process

identification

Current state

Priority

Etc

-The wait list or blocked list may further be

subdivided & providing one list that contains the

reason why the process was blocked.

-The traffic controller is called whenever the status

of a resource is changed.

-whenever a resource becomes free, one of the

blocked list associated with that device can be

placed in ready list.

Policies:
Assignment of processor to process that depends

on the following events:

- The process is complete

-The process becomes blocked

- A higher priority process needs the processor

- A time quantum has elapsed

- An error occurs

The decision of choosing a process to run:

-It is made by scanning the PCB’s ready list &

applying some policies

The Ready list can be organized in Two ways:

i) The top process on the list is run

ii) Scan the entire list & pick one process to run

The Various Process Scheduling Policies are:

(RIM-PLSPM)

1) Round robin:

Each process in turn is run
for a specific time quantum

2) Inverse of the remainder of
quantum:

-If a process has used its entire

time quantum last time,

it goes to the end of the list

-if it has used only half

(because of I/O), it goes to the
middle of the list.

P3P1 P2

Process 1

Process 2

(0.5)

(0.4-0.2)
I/O interrupt

The Various Process Scheduling Policies are:

3) Multiple level – feedback variant on round robin:

-When a new process is entered, it is run for as
many time quantum as all the other jobs in the
system. Then regular round robin proceeds.

New

Process

4) Priority:

-The job with highest priority is selected to run

5) Limited round robin:

- Jobs are run round robin for a fixed number of
time. Then they are run only when there are no
other jobs in the system.

P3P1 P2PSP4 P4

The Various Process Scheduling Policies are:

6) System balance:

-In order to keep the I/O devices busy, processes

that do a lot of I/O operations are given

preference.

7) Preferred treatment to interactive jobs:

-If an user is directly communicating with his

process, that process is given the processor

immediately after user input to provide rapid

service

User directly

communicate

the process

Processor

give permission

to run

that process

The Various Process Scheduling Policies are:

8) Merits of the job:

-In some cases, the system itself will assign

priorities. It may assign high priority to short

jobs.

Example:

MS Word – I/O bound higher, CPU Bound lower

Search any file – I/O bound lower, CPU Bound higher

3.5 Multiprocessor system

- A multiprocessor system has two or

more processors, each of which have equal

power.

- There are various way to connect and

operate a multiprocessor system. Such as:

1) Separate system

2) Co-ordinate job scheduling

3) Master / Slave scheduling

4) Homogeneous Scheduling

1) Separate system:

-Here, the systems can be logically subdivided into

two or more separate systems, each with one processor,

some main memory and peripheral devices.

Advantages:

-If one processor is being repaired, all other

resources can be pooled into one large system rather than

keeping them idle.

-There is no job & process scheduling

- It is done manually.

2) Co-ordinate Job scheduling:

- It is also called as Loosely coupled

multiprocessing.

- Each processor is associated with a separate

system

- When a job arrives, it may be assigned to

any system.

- The assignment of a job to a system may be

based on the requirements, policies.

Processor 1 Processor 2 Processor 3

3) Master / Slave scheduling:
-One processor maintain the status of all processes in

the system and schedules the work of all slave processors

- It is namely called as tightly coupled

multiprocessing.

-The master processor selects a process to be run,

finds a processor and issues a start processor instruction.

-The slave processor starts execution at the indicated

memory location.

-When the slave encounters an I/O request, it

generates an interrupt to the master processor, stop

working & waits for further

orders.

Master

Processor

Slave

processor1

Slave

processor2

Slave

processor3

Slave

processor4

4) Homogeneous processor scheduling:

- The master / slave approach has several

disadvantages:

 Under heavy scheduling loads, the master

processor may become overload and cause a

bottleneck.

- In this homogeneous approach all processors

are treated equally both master & slaves.

- A list of processes & their status will

maintained with the help of Process state list.

- Whenever a process is

stopped due to I/O wait or time

limit, the processor goes to the

Process state list and finds another

process to run.

- Each processor uses the

same scheduling algorithm to select

the next process to run.

Process 1

Process 2

Process 3

Process 4

Process 5

Process State List

3.6 Process synchronization

The sharing resources requires coordination and

cooperation to ensure correct operation.

In some case the coordination is forced upon,

because of the scarcity of the resources.

Two synchronization problems are:

1. Race condition

2. Deadly Embrace

3.6.1.Race Condition:

 Race condition occurs when the scheduling

occurs.

Scheduling of two processes is so critical THAT

DIFFERENT ORDER GIVES DIFFERENT RESULTS.

The following figure explains race condition:

 Two process are being run in a multiprogrammed

environment.

 Depending on the scheduling the print outs of

process1 may precede or process2.

If a process request a resource that is in free, that

process automatically allocated to resource.

If a process request a resource that is already in

use, that process automatically becomes blocked.

Operating

System

Process1

Process2

Printer

Print Request

Print Request

 When that resource becomes free, It can

assigned to the process.

 This Request and release facility is handled by

traffic controller of OS.

This algorithm works well for a single processor, but

trouble for multiple processors.

i) Single Processor:

Operating

System

Process 1

Process 3

Process 5

Process 2

Processor

Ready list

Selecting a process

from the ready list and

it in the running state

to run the process

ii) MultiProcessor:

simultaneously two processor will choose the

same process from ready list means, it is possible to

upset the ready list.

In order to resolve this problem:

We use Lock bit mechanism.

Before accessing ready list database, a processor

checks a specific “ Lock Bit ”.

If it is not set (lock bit =0) then database not in use.

If it is set (lock bit =1) then database in use.

When it has completed its function, the processor

resets the bit as ‘0’ .

If another processor requires access to the ready

list database in the mean time, it finds the lock bit

set and has to wait until lock is removed.

The second processor is temporarily in idle state.

Lock bit

OS

Process 1

Process 2

Process 3

Process 4

Ready List

If lock

bit = 0

then

door

will

open

0

Processor1 Processor 2

Only one door at a time can be opened

0

1

0

0

Multiprogramming

Several programs are run at the same time on a

uniprocessor.

Multiprocessing

Multiprocessing is a type of processing in

which two or more processors work together to

process more than one program simultaneously

3.6.2 Synchronization mechanism:

Various synchronization mechanism are

available to provide interprocess co-

ordination and communication.

There are:

1. Test and set instruction

2. Wait and signal mechanisms

3. P and V Operations on counting

semaphores

4. Message communication

1. Test and set instruction:

 In most of the synchronization techniques, a
physical entity called lock byte or semaphore
must be used to represent the resource.

 A semaphore is an integer variable which can
take 0 or 1 value.

 For each shared device, there should be
separate lock byte.

 If lock byte = 0, then the resource is available.

 If lock byte = 1, then the resource is already in
use.

Before operation on a shared resource, a

process must perform the following actions:

i) Examine the value of the lock byte (either 0 or 1)

ii) Set lock byte to 1 (if it is 0)

iii) If it was 1, go back to step (i)

After a process completes its use of the resource, it

sets the lock byte to zero.

if we call the lock byte as X:

- the action prior to the use of shared resource is
called LOCK(X) or REQUEST(X)

- the action after use is UNLOCK(X) or
RELEASE(X)

2. Wait and signal Mechanism:
 In the previous method, the process does not stop, if the

requested resource is not available.

 It continuously loops, testing the lock byte & waiting for

it to change to zero.

Modified wait & lock Mechanism is:

OS

Process2

Process2

1 Processor

(Run Process1)

SIGNAL (X)Lock Byte

After finished, change 1 to 0

It Checks blocked list, if

there is any process

waiting

1

2
3

4

5

6
Ready list

Waiting List

WAIT(X)

LOCK (X):

1. Examine the value of the lock byte

2. Set it to 1

3. If it was 1 already, call WAIT (X)

UNLOCK (X):

1. Set lock byte to 0

2. Call SIGNAL (X)

 WAIT and SIGNAL are primitives of the traffic

controller.

 WAIT (X) – sets the PCB of the process to

blocked state and links it to the lock byte X.

 If there are any process waiting for X, one of

them is selected and its PCB is set to ready

state.

3. P and V operations on counting semaphores:

 A semaphore is a protected variable

 Whose values can be accessed by P and V

initialization operation

Semaphore initialize mechanism is:

 P(S):

1. decrement the value of S (ie S = S - 1)

2. if S < 0 , WAIT(S)

 V(S):

1. increment the value of S (ie S = S + 1)

2. if S < = 0, SIGNAL(S)

S = 4

P(S):

If R1 allocate to process1, then S = S – 1, S = 4 -1 = 3

V(S):

If process1 release R1, then S = S + 1, S = 3 + 1 = 4

 Counting semaphores are useful when a

resource is to be allocated from a pool.

R1

R4

R3

R2

Process1

Process2 Process3

Allocation
Release

1
4

2
4

 Semaphore is initialized to the number of

resources in the pool.

 Each P operation decrement the semaphore by 1

 Each V operation increment the semaphore by 1

 If a P operation is attempted when the

semaphore has been decremented by zero, then

there are no resources available and it has to

wait until it is returned to the pool by a V

operation.

4. Message communication:

 The above three synchronization mechanisms

provide communication between processes

indirectly.

Process to process Communication by means

of the primitives:

 SEND (Pr, M) and RECEIVE (Ps, M) can also be
done.

 Pr and Ps are the names of the processes and M is
the K-byte character string (Message)

 SEND (Pr, M) saves the message M for the receiver
processor.

 RECEIVE (Ps, M) returns a message M to the
sender process.

 If there are no message for the RECEIVE request,
it becomes blocked until a message is sent to it.

Ps Pr

SEND (Pr, M)

RECEIVE (Ps, M)

3.6.3. Deadly Embrace (Deadlock)

 A Deadly Embrace is a situation in which

two processes are unknowingly waiting for

resources held by each other.

Supervisor

Request Printer

Request Reader

Release Printer

Release Reader

Request Reader

Request Printer

Release Printer

Release Reader

A1

A2

A3

A4

B1

B2

B3

B4

Process A

Process B

Printer

Card Reader

Blocked

because it

is already

in use by

Process B

Blocked

because it

is already

in use by

Process A

 Process A & B are sharing use of the printer and
card reader by means of the request and release
operations.

 The Following sequence are performed
correctly:

1. A1 A2 A3 A4 B1 B2 B3 B4

2. B1 B2 B3 B4 A1 A2 A3 A4

Let us Consider a sequence:

 A1 requests printer for process A and B1
Request reader for process B.

 If A2 requests reader for process A that time
process A must be blocked because the reader
is already in use by process B.

 When B2 request for printer for process B that
time Process B must also be blocked because
the printer is in by Process A

 Here each process is waiting for the other to
release a needed resource.

 This is a truly deadly embrace.

The following techniques for handling Deadly

Embrace:

1. Preallocate all shared resources

2. Constrain allocation

- Controlled allocation

- Standard allocation pattern

3. Detect and recover

1. Preallocate all shared resources:

 Here the user declare all the devices and other
resources he will use when submitting his job.

 The scheduler does not schedule any job until
all the necessary resources are available.

Disadvantages:

1. A user may not know before execution time all
the devices his job will use.

2. It is necessary to wait until all resources are
available.

3. It is wasteful for the system to commit a device
to a job when there is a small likelihood that the
job will use that device.

4. A particular job may not need all devices for the
entire duration of the job.

2. Constrained Allocation:

i) Controlled allocation:

Thus with this method, the job must:

1. Declare in advance the maximum resources
needed.

2. Before a resource is assigned – there is a possible Deadly
Embrace.

Disadvantage:

1. We must still know maximum needs in advance.

2. The algorithm is too conservative

3. A job may not actually use its maximum needs.

Clear all markers

(one per device)

Suppose we give

Out resource

Is

There any process

That can finish

?

Mark that process and pretend to

Return its resources to pool

Are

there any unmarked

process
Proposal is not

safe

Proposal is

safe

Yes NoYes

No

Do the available

resources equal or

exceed remaining

requirements for any

process?
There

are

some

resourc

es now

ii) Standard Allocation pattern:

 In this scheme all resources are assigned a

unique number.

Eg:

Reader = 1, printer = 2, Scanner = 3

Tape = 4, Disk = 5

 All allocation request must be in ascending

order.

For Example:

 Reader(1), Scanner(3), tape(4) is a legal request

sequence while reader(1), tape(4), Scanner(3) is

not.

 This scheme guarantees that there can’t be any

Deadly Embrace.

Disadvantages:

1. The standard sequence may not correspond to

actual resource requirement ordering of the

process.

Eg:

 If the tape is needed immediately and the printer

may be needed later, The printer must be

requested prior to the tape request.

(Printer = 2, Tape = 4)

3. Detect and recover:

 It will allow deadly Embrace to occur as long as

it can

i) detect it and

ii) recover from the problem.

Detecting Deadly Embrace:

1. Arbitrarily assign each resource and process a

unique number.

2. Allow processes to apply software locks when

seizing resources.

3. Set up tables for keeping track of resources and

process.

No.Of

Resources

Assigned to

Process no

1

2

3

.

.

Process Resource being

waited for

1

2

3

.

.

Resource Assignment Table (RATBL) Process Wait Table (PWTBL)

4. Make Appropriate RATBL and PNTBL entries as

resources are seized and released.

5. When a locked resource is requested, use the

deadly embrace detection algorithm.

Consider the following sequence:

Resource Process

1

2

3

4

5

1

3

2

2

1

Process Resource

1

2

3

3

2

5

(RATBL) (PWTBL)

R1

R2

R3

R4

R5

P1

P2

P3

P1

R5 R3

P3 P2

R2

Allocated Request

Request

Request Allocated

Allocated

 When deadly embrace is detected, it must
be removed

 One of the jobs must release one or more
resources to undo the deadly embrace

 Backtracking can be difficult

There are some techniques used:

1. Decompute algorithm (Undo computation)

2. Make a snapshot (or checkpoint) which is
used to restore conditions

 Detection is always possible, but recovery
is not always possible

 Even when recovery is possible, it is
usually difficult

UNIT – IV

DEVICE MANAGEMENT

This chapter focuses on the management of I/O

devices:

- Such as printers, card readers, tapes,

disks and drums

- And supporting devices such as control

units or control channels

Functions:

1. Keeping track of the status of all devices, which

requires special mechanisms such as Unit Control

Block associated with each device.

2. Deciding on policy to determining who gets a

device, for how long and when.

There are 3 technique for implementing the policies

of device management:

i) Dedicated - A technique whereby a device is

assigned to a single process

ii) Shared - A technique whereby a device is

shared by many processes

iii) Virtual - A technique whereby one physical

device is simulated on another

physical device

3. Allocated – physically assigning a device to

process

4. De-allocation policy & techniques.

4.1 Techniques for device Management:

Three major Techniques are used for managing and

allocating devices:

i) Dedicated Devices

ii) Shared Devices

iii) Virtual Devices

i) Dedicated Devices:

 A dedicated device is allocated to a job for the
job’s entire duration

 It is difficult one

Ex:

 To share a card reader, printer or tape

 Unfortunately dedicated assignment may be
inefficient, if the job does not fully and
continually utilize the device

ii) Shared Devices:

 Some devices such as disks, drums and most

other Direct Access Storage Devices (DASD)

may be shared by several process

 But the management of a shared device can

become quite complicated.

For Ex:

 If two processes simultaneously request a Read

from Disk A, Some mechanism must be

employed to determine which request should be

handled first.

 This may be done partially by software or

entirely by hardware.

Policy for establishing which process request is to

be satisfied first might be based on:

a) A priority list

b) The objective of achieving improved system
output

For Ex:

 By choosing whichever request is nearest to the
current position of the read head of the disk.

iii) Virtual Devices:

 A disk may be easily shared by several users,
we have converted a dedicated device to a
shared device.

Ex:

 Changing one card reader into many “Virtual”
card readers.

This technique is equally applicable to a large

number of peripheral devices, such as teletypes,

printers and most dedicated slow input / output

devices.

Ex:

Fax software can act as a virtual printer. When print

is selected the document is sent to a fax / modem,

which then sends information to another fax

machine instead of a printer printing the file.

4.2 Device Characteristics:

Peripheral devices can be generally categorized into

two major groups:

i) Input or Output Devices ii) Storage Devices

i) Input or Output Devices:

 An input device is one by which the computer
“sense” or “feeds” the outside world.

 They are devices to read punched cards,
punched papers, tape or message typed on
typewriter like terminals.

 An output devices is one by which the computer
“affects” or “controls” the outside world.

 It is a device to punch holes in cards or paper
tape, print letters and number on paper, or
control the typing of typewriter like terminals.

ii) Storage Devices:

A storage device is a mechanism by which the

computer may

- store information (a procedure called writing)

- in such a way that this information may be

retrieved at a later time (reading).

These storage devices can be differentiated based

on the variation of access time (Tij) where;

Tij = time to access item j from current position

item i

The storage devices are classified into the following

categories:

1) Serial Access devices

2) Completely Direct Access Devices

3) Direct Access Storage Devices

1) Serial Access Devices: (8 Mark)

 A serial access storage device can be characterized as

sequential positioning and accessing of information.

 Access to an arbitrary stored item requires a “Linear

Search”.

Ex:

Magnetic Tape Unit (MTU) – serial Access Device

E3 C1 D7 C5 E4 D5 C9 E3

Magnetic tape

Read / write head

Begning of tape

1 2 3 4 1 2 3 4

Record 100

(4 byte)

Record 101

(4 byte)

End

of

Tape

- Inter-Record Gaps

 Information is usually stored as groups of bytes
called records.

 In this figure all the records are four bytes long

 Each record can be identified by its physical
positioning on the tape.

 The current record counter shows the record
under the read / write head of the MTU.

 If the tape is positioned at its beginning, to read
record number 101, it is necessary to skip over
all 100 records to reach record 101.

Some of the I/O Commands used with the MTU are:

i) Read the next record (or) write the next record

ii) Read the last Record

iii) Rewind to the beginning of the tape at high
speed

iv) Skip forward (or backword) one record without
actually reading or writing data

v) Write tape mark (record type can be written)

Tape marks are somewhat analogous to putting

bookmarks in a book to help find your place.

Typical Characteristics of a MTU are:

Density - 1600 bytes per inch

Speed - 200 inches per second

Length - 2400 feet long

Maximum Access - 2 minutes

Random Access - 1 minute

(Average)

Serial Access ≈ 4 ms

(at one record read the next)

 The inter record gap (IRG) shown in the

diagram is necessary due to the physical

limitations of starting and Stopping the

tape.

 The IRG is usually from ¼ to ¾ of an inch (

equal to 400 to 1200 bytes).

 To minimized gap waste, blocking is

Used.

Blocking:

 It is placing multiple logical records into

one physical record.

 Blocks are typically 800 to 8000 bytes long

 When the file system receives a request to

read a logical record,

 Then entire physical record is read into a

buffer area in the main memory and the

request is satisfied by extracting the

logical record from the buffer area.

Three Advantages to Blocking:

1. Fewer i/o operations are needed. Since

each i/o operation reads & writes multiple

logical records at a time.

2. Less wasted space. Since record length is

larger than the IRG length

3. Smaller tape space is covered when reading many

records (less distance to travel). Since there is

less wasted space.

Three Major Disadvantages:

1. Software overhead and routines are required to

do the blocking, detecting and record keeping.

2. Buffer space is wasted (when we want only 80

bytes of data, we have to read 8000 bytes)

3. There is more likelihood of tape errors. Since

long records are being read.

2) Completely Direct Access Devices: (8 Mark)

 A completely direct access device is one in

which the access time Tij is a constant

Ex:

 Magnetic core memory, semiconductor memory,

read-only wired memory and diode matrix

memories

 In the given diagram, 16 circles represented

magnetic ferrite cores.

 All cores are connected by wires.

 When the hardware receives a read request for

some address the address is decomposed into X

and Y portions

 The hardware then selects the appropriate core.

 This is done by passing current through the two
selection wires.

 Only the core at the specified (x, y) co-ordinate
receives a “double dose” of current

 Then double dose of current is enough to “flip”
the magnetic field from one to zero.

 When it changes magnetic state, then a third
sensing wire is passed through all the cores.

 If the appropriate core was one and it was
switched to zero, a current would be included in
this wire.

 If it was already zero, there would be no included
current.

 Note that: The process of reading a core
destroys its information, thus an additional cycle
is necessary to write the information back.

Magnetic Core Memory

3 2 1 0

Y Part X Part

Address

0

4

8

12

1110

1 1

111

1 1 1 1

0

01

4 1

3. Direct Access Storage Devices (DASD): (15 Mark)

In this section we have two Example, there are:

a) Fixed – Head Drums and Disks

b) Moving – Head Drums and Disks.

3.a) Fixed – Head Drums and Disks: (8 Mark)

 It is similar to magnetic drum.

 A magnetic drum can be viewed as several

adjacent strips of magnetic tape wrapped

around a drum.

 So that the ends of each tape strip join.

 Each tape strip called a track.

 Each track has a separate read/write head.

 The drum continuously revolves at high speed,

so that the records repeatedly pass under the

read/write heads.

 Each individual record is identified by a track

number and then a record number

Ex:

Record (3, 1) is ‘E4D5C9E3’

 Typical magnetic drums spin very fast and have

several hundred read/write heads.

 Random access to read / write can be

accomplished in 5 or 10 milliseconds

Necessary to specify the DASD address in the i/o

channel command. The i/o command would be:

i) DASD record (3, 1) into

ii) memory address (28768)

iii) length (80)

In most cases this i/o command is broken into two

parts:

1) DASD positioning

2) Data transfer operation

Thus the above i/o command would become:

POSITION to DASD record (3, 1)

READ into memory address (28765) length (80)

Typical Characteristics of a Drum are:

Rotation speed - 10 ms

Maximum access time - 10 ms

Average random

access time - 5 ms

Serial Access

(depending on the < 1 ms

length of record)

Capacity = 8 million bytes

(256 heads,

32,000 bytes per track)

 The drum is always rotating.

 Hence the inter record gap (IRG) is not need.

One use of IRG on a tape:

 IRG allows time for CPU for processing the last

record before it reads the next record.

 When reading records sequentially on a drum.

Since there is no IRG after processing the last

record.

 The CPU may have to wait for the drum to rotate

all the way around to get the next record.

 This can make a significant difference in time for

sequential processing.

Drum Record Data Record

1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

9 I

10 J

 To avoid the above mentioned problem of

timing, “Inter Leaving” technique is used.

Ex:

 If there are 10 records (A, B, C, ….. , J) to be

stored on a drum that has 10 records per track.

The records can be stored as follows:

Drum Record Data Record

1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

9 I

10 J

 Let us assume that these records are frequently read

sequentially (ie, Read record from A, B, C, … , J)

 Assume that the job takes 1ms to read and 2ms to

process the record.

 When the CPU is processing record ‘A’ after

reading it, the drum would have rotated to the

beginning of drum it reaches record 4.

 In order then to read record ‘B’, the drum must

rotate around to record 2 again, which will take

8ms.

= 10 X [1ms (read record) + 2ms (process

record) + 8ms (access next record)]

= 10 X 11ms = 110ms

A B C D E F G H I J

D E F G H I J A B C

Alternatively, the record could have been stored as

follows:

Drum Record Data Record

1 A

2 H

3 E

4 B

5 I

6 F

7 C

8 J

9 G

10 D

 This time, by the time CPU finishes reading and

processing record A, the drum would again have

rotated to the beginning of drum record 4.

 The data record B is stored at drum record 4

which is wanted for processing next.

= 10 X [1ms (read record) + 2ms (process

record)]

= 10 X 3 = 30ms

 In comparing these two schemes for storing

data record, it is found that the second scheme

is four times faster than the first scheme.

 This difference becomes quite significant when

there are 1,000 or 10,000 record to be processed.

A H E B I F C J G D

B I F C J G D A H E

 Blocking is also helpful in improving the

performance of sequential processing

 Instead of IRG’s, If the drum uses blocking to

minimize the amount of wasted space.

3.b) Moving – Head Drums and disks: (8 Mark)

 The magnetic disk contains one or more flat

disks

 Each with a series of concentric circles, one per

read/write head.

 The heads are physically moved from track to

track, such units are called moving arm or

moving head DASD’s.

 Each position is called cylinder.

Identification of a particular record stored on the

moving head DASD shown in the given Diagram:

 It is necessary to specify the arm position, track

number and record number.

 Thus to access a record, then to wait for the

correct record to rotate under the read/write

head.

 A separate I/O command, called seek is used to

position the arm on a cylinder.

 Once the arm is positioned, the particular track

(head) and the particular record on that track

can be read.

Moving

arm

Head1

Head2

Head3

1

Cylinder 3

Track3, record 2

Spindle

connecting

disks

Revolving Disks

2
3

4

(Arm positions)

 Typical moving head disk DASDs have 10 to 50

tracks and 200 to 400 arm positions with

characteristics such as:

 Maximum access time = 75ms

 maximum arm movement = 55ms

 maximum rotation = 20ms

 Average (random) access = 30ms

 Serial access < 1ms

 Capacity = 100 million bytes (400 cylinders, 20

heads, 16,000 bytes per track)

4.5 I/O traffic Controller, I/O Scheduler, I/O Device

Handlers: (15 Marks)

The functions of device management can be

conveniently divided into 3 parts:

1. I/O traffic controller 2. I/O scheduler

3. I/O Device Handler

i) I/O traffic controller:

Keep track of the status of all devices, control
units and channels.

The traffic controller accepts to answer at
least three key questions:

1. Is there a path available to service an i/o
request?

2. Is more than one path available?

3. If no path is currently available, when will
one be free?

 In order to maintain these questions, the
traffic controller maintains a database. It
maintains 3 control blocks:

It maintains 3 control blocks:

i) Channel control block (CCB)

ii) Control unit control block (CUCB)

iii) Unit Control block (UCB)
Device

Channel Control Block (CCB)
Control Unit

Control Block (CUCB)

Unit Control Block (UCB)

Channel identification

Status identification

List of control units

connected to this

channel

List of processes

waiting for this

channel

Control unit

identification

Status of Control unit

List of channels

connected to this

control unit

List of processes

waiting for this

control unit

Device unit

identification

Status of Device

List of control nits

connected to this

Device

List of processes

waiting for this Device

Memory Channel Control Unit Drum

 The first question can be answered by starting at the

desired UCB and working back through the connected

units and channels trying to find a combination that is

available.

 The second question may be important, especially

when I/O configuration is symmetric, since choosing

one path may block out other I/O request.

 For third question, when an I/O completion interrupt

occurs, one or more components(ie device, control

unit, channel) become available again.

Memory

Channel

A

Channel

B

Control Unit

D

Control Unit

F

Device G

Device I

Channel

C

Control Unit

E Device H

ii) I/O Scheduler:

 If there are more I/O requests pending than
available paths, it is necessary to choose which
I/O requests to satisfy first.

 I/O requests are not normally time sliced that is,
not usually interrupted until it has been
completed.

 Most channel programs are quite short and
terminate within 50 – 100ms.

 Many different policies may be incorporated into
the I/O scheduler like higher priority request is
assigned.

iii) I/O Device Handler: (8 Marks)

 The I/O device handler provide detailed scheduling
algorithms that are dependent upon the
peculiarities of the device type.

 There are different device handler algorithm for
each type of I/O device.

a) Rotational Ordering b) Alternate Address c) Seek Address

a) Rotational Ordering:

 Under heavy I/O loads, several I/O requests may

be wait for the same device.

Ex:

Consider a drum like device, it has only four

records. There are four I/O requests:

1. Read record 4

2. Read record 3

3. Read record 2

4. Read record 1

Speed=20ms per rotation

 There are several ways that these I/O requests

can be ordered to accomplish the same result.

1 2 3 4

Ordering A:

Reading request order: 4, 3, 2, 1

T?4 + T43 + T32 + T21 ≈ 3 revolutions

(¾ + 3 x ¾ = ¾ + 9/4 = 12/4 = 3 rotations)

1 rotation = 20 milliseconds

½ rotation = 10 ms

¼ rotation = 5 ms

3 rotation X 20ms = 60ms

(or)

(4 X ¾) = 4 X 15ms(one record reading) = 60ms

Approximately it equals to 60ms, to read all four

records. Since we do not know the current

position.

1 2 3 4

4 1 2 3

Ordering B:

Reading request order: 1, 2, 3, 4

T?1 + T12 + T23 + T34 ≈ 1.5 revolutions

(¾ + 3 x ¼ = ¾ + ¾ = 6/4 = 1.5 rotations)

1 rotation = 20 milliseconds

½ rotation = 10 ms

¼ rotation = 5 ms

1.5 rotation X 20ms = 30ms

(or)

15ms + (3 X 5ms) = 30ms

Approximately it equals to 30ms, to read all four
records.

The result of A and B are the same, there is a
difference in speed.

2 3 4 1

1 2 3 4

Ordering C:

If we knew that “?” equaled record 3.

Current Read position is record 3.

Reading request order: 4, 1, 2, 3

T34 + T41 + T12 + T23 ≈ 1 revolution

(1/4 + 1/4 + 1/4 + 1/4 = 4/4 = 1 rotation)

1 rotation X 20ms = 20ms

(or)

(4 X ¼) = 4 X 5ms = 20ms

Approximately it equals to 20ms, to read all four
records.

Device handler to know the current position for the
rotating drum. This hardware facility is called
Rotational position sensing.

3 4 1 2

b) Alternate Address:

 There are several alternate addresses for reading the

same data record. This technique has also been called

folding.

 If record A is stored on track1, record1, then it would

take half revolution ie 10ms to access record.

 If a copy of record A is stored at both track1, record1 and

track1, record3 then always accessing the “closest”

copy, using rotational position sensing.

 Access time can be reduced to 5ms or 2.5ms or even

1.25ms by storing even more copies of the same.

A B C D

B C A D

C B A F

The Device has

been folded N

times

c) Seek Ordering:

 Moving-head storage devices have the problem of seek

position.

I/O request requires a three-part address:

cylinder number

track number

record number

If the read request;

cylinder1, track2, record1

cylinder40, track3, record3

cylinder5, track6, record5

cylinder1, track5, record7

Considerable time to spend

move the seek arm back and

forth.

A more effective

ordering would be:
cylinder1, track2, record1

cylinder1, track5, record7

cylinder5, track6, record5

cylinder40, track3, record3

The distance between

seeks have been

minimized

4.7. VIRTUAL DEVICES
 Using Spooling a dedicated device like a card reader

can be converted into many “virtual” card readers.

 This Technique is applicable to slow input/output
devices like Card readers, punches and printers.

There are two serious problems that hamper effective device
utilization in slow input/output devices. There are:

i. If a job attempts to generate requests faster than the
device performance. The job must wait a significant
amount of time.

ii. On the other hand, if a job generates requests at a much
lower rate, the device is idle much of the time and is
under utilized.

ii. These devices must be dedicated to a single job at
a time. When these devices are allocated to jobs,
only a fraction of the capacity is being made use,
all other program generate irregular requests.

a) Historical solutions:

 These problem will disappear, if it is possible to use
direct access storage devices for all input and output.

 As in the following diagram, a single DASD can be
efficiently shared and simultaneously used for reading
and / or writing data by many jobs

 DASDs provide very high performance rates and
decrease a amount of wait time for jobs that require

substantial amounts of input/output.

Job 1

Job 2

Job 3

Job 1’s

input

Job 2’s

input

Job 3’s

input

Job 1’s

output

Job 2’s

output

Job 3’s

output

Memory

Input DASD
Output DASD

Disadvantages:

 The use of DASD’s for all input and output is

impractical because of the problems of putting

the input data into the input DASD and getting

out the data recorded on the output DASD.

i. Offline Peripheral Operations:

A solution to the problem can be found in the

three step process illustrated in the following

diagram:

Step 2:

Step 3:

Off line peripheral operations
Step 1:

High-speed

Input

program

Job 3 Job 1

Job 4 Job 2 Computer 1

(peripheral Computer)

Job 1

Job 2

Job 3

Computer 2

(main computer)

High-speed

output

program

Job 1

Job 2

Job 3Computer 3

(peripheral Computer)Output DASD

Printed

output

Output DASD

input DASD

Job 1

Job 2

Job 1

Job 4

Job 2

Job 3

Job 1

Job 2

Job 3

Job 1

Job 4

Job 2

Job 3

1
2

3

4 5

6

7 8

Input DASD

Step 1:

A Separate computer is used whose sole function is to

read cards at maximum speed and record the corresponding

information on a DASD. Two or more card readers can be used

by computer 1, depending upon the amount of input.

Step 2:

The DASD containing the input recorded by computer 1

is moved over to the main processing computer (computer 2).

Multiple jobs can be in execution, each reading its respective

input from the input DASD and writing its output onto an

output DASD.

Step 3:

The output DASD is moved to a third computer that

reads the recorded output at high speed and prints the

information in the printers.

The work performed by the computer 1 and 3 was

termed as offline peripheral processing and the

computers were called peripheral computers.

There are several observation that can be made at this

time.

The peripheral computers are required to perform only

rather simple tasks, they can be quite simple, slow and

inexpensive.

If there is a relatively low peripheral load, one

peripheral computer might handle it all-possibly

switching from input processing to output processing

every few hours.

The offline peripheral processing techniques solved the

problem presented earlier, but it also introduced several

new problems in regards to

1) Human Intervention

2) Turn around

3) Scheduling

 Since human operators were required to move the input
peripheral computer to the main computer and to perform
a similar task for processing, there were many
opportunities for human errors and inefficiency.

This batch processing approach made each job wait in

line at each step and often increased its turnaround time.

As a result of this batch processing it was difficult to

provide the desired priority scheduling.

ii. Direct – Coupled Systems:

The following diagram shows a configuration in which

the input and output DASDs are physically connected to

both the peripheral computer and the main computer

 Thus eliminating the need for human handling which

was the main drawback of the offline peripheral

processing approach.

 This configuration is called a Direct-Coupled System

(DCS)

JOB 4

JOB 5

JOB 6

Direct – Coupled

System

2

Input/output

program

JOB 7 JOB 8

JOB 6

JOB 5

JOB 4

JOB 4 JOB 2

JOB 5 JOB 5

JOB 6

Job 9

Job 10

Job 7

Job 8

Job 3

Job 1

Job 2

1

5

4

3

6

Peripheral

Computer
Input Card disk

Printed

Output

Input DASD Output DASD

Main

Computer

The direct-coupled system approach eliminates most of the

problem of offline peripheral processing:

No human intervention is required.

 There is no “batch processing” and turn around time delay.

An actual direct-coupled system might use a single shared
DASD for both input and output or several shared DASDs.

It is important to coordinate carefully the use of a shared DASD;
Mechanisms must be provide so that the main computer knows that
a job has been placed on the input DASD and where it is located;
similar request exist for output..

 Since both the peripheral computer and main computer wish to
use the same DASD at the same time, there are frequent access
conflicts that can reduce performance, there by making the DASD
a critical bottleneck.
/

(iii) Attached Support Processor:

Another variation of the direct coupled systems consists of

directly connecting the peripheral and the main computers via

a high speed connection as shown in the following figure.

 In this configuration, the peripheral computer is called an

attached support processor (ASP).

 The support processor assumes all responsibility for control

input/output peripherals as well as the input/output DASDs. It

also performs all buffering and blocking. The attached

processor produces the effect of virtual devices.

“Attached support processor “ Actual Configuration

Job 5

Input /output

program

Job 3

Job 4

Job 5

(2 printers)

output DASD

Printed output

Attached

Support

Computer

Job 8

Job 9

Job 7

Job 6

(2 readers)

Input card decks

Main computer

Job 1

Job 2

Input DASD

Job 8

Job 7 Job 3

Job 4 Job 5

Job 3 Job 2

Job 1

Job 4

Job 3

Job 4

Job 5

Job 4

Job 3

Job 4

Job 5

Job 3

Job 4

Job 5

(3 high speed

Readers)
(3 high speed

printers)

Virtual Configuration

1

2

3

4 5

6

7

8

9

Disadvantages of this ASP approach are:

Two (or more) processors are required and certain

processor are assigned specific tasks, it is possible at times

one processor may be idle or under utilized while another

is unable to handle the load.

(iv) Virtual System:

Considering the power processing facilities

available in convectional i/o channels and multi

programming capabilities, a separate computer for I/O is

not necessary. A spooling system in which the main

computer performs simultaneous peripheral operation On

line (SPOOL) provides the better solution.

Share the use of the main computer with normal jobs via

multiprogramming.

Since the jobs are actually system jobs rather than user jobs,

they are given special names such as “phantoms” or

“daemons”.

The case of implementing a spool mechanism depends

directly upon the specific facilities provided by the memory

management, processor management, Information management

and device management of the operating system.

Spooling often improves the system so much.

That is frequently provided as part of same simple operating

systems that do not support multiprogramming.

SPOOLing system(Simultaneous Peripheral Operations

OnLine)

Input

Store

Job

(Read)

Input

Fetch

Job

Output

Store

job

Output

Fetch

Job

(Print)

Job 2

Job 4

Job 3

Input card decks Printed

output

Job 5

Job 4 Job 2

Job 3 Job 5

Job 4 Job 2

Job 3

Job 9 Job 5

Job 1

1

2

3

4 5

6

7

7

(a)Design of a spooling System:

The spooling programs are assumed to be an integral part of

an operating system and perform their own specialized

information management. In such system, there are two

special operating system functions provide.

They are:

(i) Read next input card - CALL READNEXT(BUFFER)

(ii) Print next output line –CALL PRINTNEXT(BUFFER)

 Actually, the card is not physically read, nor the line

printed at the time of these calls, since virtual device are

being used.

A general input and output spool system can be subdivided

into four components as presented in the following diagram.

These individual components can be grouped in several

ways, on the basis of function (input or output) or by the

method of gaining control (call or interrupt).

The division of a program in to “call side” and an

“interrupt side” is used in handling various devices and

operating system functions.

General structure of the SPOOL system

Input

Store

(read)

Input

fetch

Output

fetch

(print)

Output

store

Shared

database

Input

side

Output

side

Interrupt

side

CALL PRINTNEXT

(BUFFER)

CALL READNEXT

(BUFFER)

I/O complete

interrupt

(printer)

I/O complete

interrupt

(Reader)

Call

Side

i) Input SPOOL:

Two major operations here:

1. To Read each input card and stored it on a DASD

2. To Provide access to the DASD copy of the next input

card during execution.

The reading of input card is done independently of the

job, even before the job begins.

 The storing of input card physically read from the card

reader is done as soon as the input is completed.

This operation initiated in response to the I/O complete

indication from card reader.

This type of operation is called “interrupt driven”.

The following diagram show the Shared data base to

coordinate the interrupt and the call side of the input

SPOOL:

The DASD is divided into sections, which is holding an
input deck

The SPOOL table maintains the status of each input
DASD storage area (SPOOL area).

 It may be hold INPUT, HOLD, RUN or AVAILABLE
state.

INPUT: The input card is still being read

HOLD: The input deck has been completed copied on the
DASD but the Corresponding job has not been started
yet.

RUN: The Corresponding job is currently running and
reading the input data from the SOOL area

Name Last Card

Read

Pointer to

SPOOL table

A 3

B 7

Job B Job A

CALL READNEXT

Name Status Length Location

A RUN 6

B RUN 7

C HOLD 3

D INPUT -

E INPUT -

- AVAILABLE -

A
B E

C D

Last card

Read

Pointer to

SPOOL table
3
2

Job F Job D

Job E

Database Of the SPOOL System

Reader 1

Reader 2

Input DASDJob Table

Input SPOOL Table

Reader Table

ii) Input SPOOL Algorithm:

There are two databases:

i) The Read Table – maintain status of each card reader

ii) The Job Table – maintain status of all jobs currently

running

Interrupt side of input SPOOL program:
I/O complete

interrupt from

reader

Is it

Job card

?

Increment Last card read

field (reader table)

Store Input card on DASD

Perform SIO to start read

For next card

Store length of input SPOOL

Table. Set status to “hold”

Set up for next job

Find “available” entry in

SPOOL table

Set status to “input” and

read next card

Set last card read field = 1

yesno

Call side of input SPOOL program:

CALL READ

NEXT

From Job j

Does Last

card read = length of

Input SPOOL

?

Increment Last card read

Field (job table)

Read input card from DASD

Set status to “available”

Return input

card to Job

Return to Job

with error

indicator “no

more input”

yesno

UNIT - 5

Information Management

Information management is concerned with the storage and retrieval of

information.

The basic functions of information management are

1. Keeping track of information in the system through various tables, the

major one being the file directory-sometimes called Volume Table of

Contents (VTOC). These tables contain the name, location and accessing

rights of all information within the system.

2. Determining policy for determining where and how information is stored

and who gets access to the information.

3. Allocation of information resource. The allocation module must find the

desired information accessible to the process, and establish the appropriate

access rights.

4. Deallocation of resources.

 SIMPLE FILE SYSTEM

Let us consider the steps needed to process the following PL/I-like statement.

READ FILE (ETHEL) RECORD (4) INTO LOCATION (12000)

This is a request to read the fourth record of the file named ETHEL into a

memory location 12000. Such a request invokes elements of the file system.

For the purpose of this example, let us assume that the file ETHEL is stored on a disk,

as shown in Figure 5.2.

The file ETHEL is the shaded portion and consists of seven logical records. Each

logical record is 500 bytes long.

The disk consists of 16 physical blocks of 1000 bytes each.

We can store two logical records of file ETHEL. into each physical block.

Instead of using the physical two-component (track number, record number) address,

we will assign each physical block a unique number, as indicated in Figure below.

File Directory Database

Information on each existing file's status, for example, name and location, must

be maintained in a table.

This table is often called a file directory or a Volume Table of Contents.

The name Volume Table of Contents comes from viewing the storage device

medium as a "container of information" and thus a volume.

Figure 5-3 depicts a sample file directory. Each entry contains information

necessary to find and access a file. The logical organization, i.e., programmer's view,

is described in terms of the logical record length and the number of records.

The physical location of the file on the storage device can be determined by

means of the starting block number information in conjunction with the logical

record length and number of records. File ETHEL, for example, consists of seven

SOD-byte records that require 3500 bytes of storage. Since the physical blocks are

1000 bytes long, four blocks are needed to hold files ETHEL. The first of these

blocks, noted in the file directory, is 6. Thus, ETHEL occupies physical storage

blocks 6, 7, 8, and 9, as previously depicted in Figure 5.2.

ETHEL is logically structured from the user's point of view as a sequential file,

i.e., it consists of seven records numbered 1 through 7.

It is also physically stored as a sequential file, i.e.. its records are stored

adjacent to one another in consecutive physical blocks.

However, the physical structure of ETHEL need not be sequential. The blocks

of ETHEL could be scattered all over secondary storage, and a mapping between the

logical records and the physical blocks might then become quite complicated.

There are six entries listed in the file directory of Figure 5.3.

Three of these (MARILYN, ETHEL and JOHN) corresponds to real user files.

The other three entries are needed merely to account for presently unused

storage space.

 Steps to Be Performed

The following figure presents the steps that must be performed to satisfy a

request, such as:

READ FILE (ETHEL) RECORD (4) INTO LOCATION (12000)

 Fig. 5.4

 GENERAL MODEL OF A FILE SYSTEM

In this section a general model of a file system is introduced. Most of key

components of a file system correspond to generalizations of specific steps of Figure

5.4.

The components in this file system are organized as a structured hierarchy.

Each level in the hierarchy depends only on levels below it. This concept improves

the possibility of systematic debugging procedures. For example, once the lowest

level is debugged, changes at higher levels have no effect. Debugging can proceed

from lowest to highest levels.

Although the particular details presented in this chapter (e.g., format of file

directory, file maps) may vary significantly from system to system, the basic struc-

ture is common to most contemporary me systems. For example, depending on the

structure of a specific file system, certain of the modules in Figure 5.5 may be

merged together, further subdivided, or even eliminated-but the underlying structure

should still be the same.

File Directory Maintenance

Before discussing the functions of the file system components, it is important to

answer certain questions about the file directory, such as: How are the file directory

entries created and filled in? Where is the file directory stored? Is it necessary to

search the entire directory for every request?

In a basic system such as IBM's Basic Operating System/360 (OS/360), the

programmer must keep track of available storage space and maintain the me direc-

tory by control cards similar to:

CREATE ETHEL, RECSIZE=500, NUMRECS=7, LOCATlON = 6 DELETE

JOHN

The CREATE command adds a new entry to the file directory and the

DELETE command removes an old one.

If the entire file directory is kept in main memory all the time, a significant

amount of memory may be needed to store it. A more general approach is to treat the

file directory as a file and place it on the storage volume. Furthermore, if the me

directory is stored on the volume, the files may be easily transferred to another

system by physically transferring the volume (tape reel, disk pack, etc.) containing

these files as well as the corresponding me directory.

If the file directory is stored on the volume, then it may take a substantial

amount of time to search it for each access to files. Although the directory may be

quite large, possibly containing thousands of entries, usually only a few files are

ever used at one time. Thus if we copy the entries for files that are currently in use

into main memory, the subsequent search times can be substantially reduced. Many

file systems have two special requests, OPEN, to copy a specific file directory entry

into main memory, and CLOSE, to indicate the entry is no longer needed in main

memory. Likewise, we talk about a file being open or closed depending upon the

current location of its file directory entry.

 Symbolic File System

The first processing step is called the Symbolic file System (SFS). A typical call

would be :

CALL SFS (function, file name, record number, location), such as: CALL SFS (READ,

"ETHEL", 4, 12000)

The Symbolic File System uses the file name to locate that file's unique file

directory entry. This function corresponds to step 1 in Figure 5.4.

In our simple system we had assumed a one-to-one correspondence between

me names and files. In more advanced file systems, the facility must exist to have

several files with the same name and be able to call the same me by different names.

To implement such facilities, we divide the file directory of Figure 5-3 into two

separate directories, a Symbolic File Directory (SFD) and a Basic File Directory

(BFD) as shown in Figure 5-5. The symbolic file system must search the symbolic

file directory to determine a unique identifier (10) for the file requested (see Figure

5-5). This ID is used instead of the file's name to locate entries in the Basic File

Directory. The Basic File System allows operations on files using the 10 such as :

CALL BFS (READ, 5, 4, 12000)

Where 5 is ETHEL's 10.

Since the SFDs are usually kept on the storage device, entries for files that are

currently in use (called active or opened files) are copied into main memory. These

copies can be used to eliminate repeated 1/0 access to the same entry on the storage

device. We will call this table of active me entries the Active Name Table (ANT).

DECLARE 1 SFD_ENTRY

2 NAME CHARACTER (16)

2 ID FIXED BINARY (31)

DO I = 1 TO 3

CALL BFS (READ, 2,1,SFD_ENTRY)

IF SFD_ENTRY.NAME = DESIRED_NAME

THEN GOTO FOUND

END;

FOUND: DESIRED_ID = SFD_ENTRY.ID;

In summary the Symbolic File System is responsible for :

1. The Symbolic File Directory

2. The Active Name Table

3. Communication with the Basic File System

Basic File System

The second processing step is called the Basic File System (BFS). A typical

call would be :

CALL BFS (function, file 10, record number, location), such as : CALL BFS

(READ, 5, 4, 12000)

The Basic File System uses the file ID to locate that file's entry in the Basic

File Directory and copies the entry into main memory. This function corresponds to

step 2 in Figure 5.4.

By permanently assigning the Symbolic File Directory a specific 10, the SFS

can use the facilities of the BFS to search the directory for the desired name and

10. For example, the PL/I program segment Verification (ACV), which processes

calls such as

CALL ACV (READ, 2,4, 1200)

Where AFT entry 2 contains the information for me 10 5 (me ETHEL).

In summary, the Basic File System is responsible for:

1. The Basic File Directory

2. The Active File Table

3. Communication with the Access Control Verification module

For the simple file system of Section 5-2, it is quite easy to combine the SFS and

BFS functions. In later sections we will introduce additional functionality where this

logical separation is much more significant.

 Access Control Verification

The third processing step is called Access Control Verification (ACV). A typical

call would be

CALL ACV (function, AFT entry, record number, location) such as CALL ACV

(READ, 2,4, 12000)

The Access Control Verification acts as check-point between the Basic File

System and the Logical File System. It compares the desired function (e.g., READ,

WRITE) with the allowed accesses indicated in the AFT entry. If the access is not

allowed, an error condition exists and the file sys-tem request is aborted. If the

access is allowed, control passes directly to the Logical File System. This function

corresponds to step 3 in Figure 5.4.

 Logical File System

The fourth processing step is called the Logical File System (LFS). A typical call

would be

CALL LFS (function. AFT entry, record number, location) such as CALL LFS

(READ, 2, 4, 12000)

The Logical File System converts the request for a logical record into a request

for a logical byte string. That is, a file is treated as a sequential byte string without

any explicit record format by the Physical File System. In this simple case of fixed

length records, the necessary conversion can be accomplished by using the record

length information from the AFT entry. That is, the

Logical Byte Address = (Record Number - I) X Record Length

and

Logical Byte Length = Record Length

This function corresponds to step 4 in Figure 5.4.

Note that by permanently assigning the BFD file a specific ID (such as ID I in

Figure 5-5b) and a specific AFT entry number (such as AFT entry I), the Basic File

System can call upon the Logical File System to read and write entries in the Basic

File Directory. (It is necessary to have a special procedure for fetching BFD entry 1

into AFT entry 1 when the system is initially started or restarted.)

In summary, the Logical File System is responsible for: CALL PFS (READ, 2,

1500, 500, 12000)

Note that by permanently assigning the BFD file a specific ID (such as ID 1 in

Figure 5-5b) and a specific AFT entry number (such as AFT entry 1), the Basic File

System can call upon the Logical File System to read and write entries in the Basic

File Directory. (It is necessary to have a special procedure for fetching BFD entry 1

into AFT entry I when the system is initially started or restarted.)

In summary, the Logical File System is responsible for :

1. Conversion of record request to byte string request

2. Communication with the Physical File System

Examples of more complex logical record organizations, such as variable-

length records, are presented in later sections.

Physical File System

The fifth processing step is called the Physical File System (PFS). A typical

call would be

CALL PFS (function, AFT entry, byte address, byte length, location) such as

CALL PFS (READ, 2, 1500, 500, 12000)

The Physical File System uses the byte address plus the AFT entry to

determine the physical block that contains the desired byte string. This block is read

into an assigned buffer in main memory, using the facilities of the Device Strategy

Module, and the byte string is extracted and moved to the user's buffer area. This

function corresponds to steps 5 and 7 in Figure 5.4.

The mapping from Logical Byte Address to Physical Block Number, for the

simple contiguous organization of Figure 5-2, can be accomplished by:

Physical Block Number = Logical Byte Address / Physical Block Size +

address of first physical block

For the request for the byte string starting at Logical Byte Address 1500, the

Physical Block Number is :

Physical Block Number = 1500 / 1000 + 6 = I + 6 = 7

which is the block containing record 4 of me ETHEL (see Figure 5-2).

The location of the byte string within the physical block can be determined

by:

Block Offset = remainder [Logical Block Address / Physical Block Size]

such as :

Physical Block Offset = remainder [1500 / 1000] = 500.

Thus, the byte string starts at the offset 500 within the physical block, as expected

from Figure 5.2.

In order to perform these calculations, the Physical File System must know the

mapping functions and physical block size used for each storage device. If these

were the same for all devices, the information could be built into the PFS routines.

Usually there are variations depending upon the device type (e.g., a large disk may

be handled differently from a small drum). Thus, this information is usually kept on

the storage volume itself and read into the Physical Organization Table (POT) when

the system is first started.

If a WRITE request were being handled and the corresponding physical block

had not been assigned, the Physical File System would call upon the Allocation

Strategy Module (ASM) for the address of a free block of secondary storage.

In summary, the Physical File System is responsible for:

1. Conversion of logical byte string request into Physical Block Number and Offset

2. The Physical Organization Table

3. Communication with the Allocation Strategy Module and the Device Strategy

Module

Later sections will introduce many more physical system organizations and

performance considerations that have an impact on the physical file system.

Allocation Strategy Module

The Allocation Strategy Module (ASM) is responsible for keeping track of

unused blocks on each storage device. A typical call would be:

CALL ASM (POT entry, number of blocks, first block) such as:

CALL ASM (6, 4, FIRSTBLOCK)

where POT entry 6 corresponds to the storage device on which file ETHEL is

to reside and FIRSTBLOCK is a variable in which the address of the first of the four

blocks requested is returned.

Figure 5-5 indicates how the location of groups of available blocks can be

recorded in the Basic File Directory by treating them as special files. Other

techniques for maintaining this information are presented in subsequent sections.

The Device Strategy Module (DSM) converts the Physical Block Number to

the address format needed by the device (e.g., physical block 7 = track I, record 3, as

shown in Figure 5-2). It sets up appropriate I/O commands for that device type. This

function corresponds to step 6 in Figure 5.4. All previous modules have been device-

independent. This one is device-dependent. Control then passes to the I/O scheduler.

 I/O Scheduler and Device Handler

These modules correspond to the device management routines that were

discussed in Chapter 3. They schedule and perform the reading of the physical block

containing the requested information.

Calls and Returns between File System Modules

After the physical I/O is completed, control is returned to the Device Strategy

Module. The DSM checks for correct completion and returns control to the PFS,

which extracts the desired information from the buffer and places it into the desired

location. A "success" code is then returned back through all other modules of the file

system.

Why isn't an immediate return made to the uppermost level? There are two

reasons: (I) An error may be detected at any level, and that level must return the

appropriate error code (for example, the Logical File System may detect the

attempted access of an address beyond the file); and (2) any level may generate

several calls to lower levels (for example, the Symbolic File System may call the

Basic File System several times to read entries from the Symbolic File Directory).

The Symbolic File System checks to see whether or not a file exists. The

Access Control Verification checks' to see whether or not access is permitted. The

Logical File System checks to see whether the requested logical address is within the

file. The Device Strategy Module checks to see whether or not such a device exists.

Shortcomings of Simple File System Design

Let us summarize some of the assumptions, inefficiencies, and inadequacies of

our simple file-system system :

1. Symbolic File System

We assumed that each file had a single unique name.

2. Access Control Verification

How are files shared? How can the same file have different protection rights for

different uses?

3. Logical File System

We assumed that each file consisted of fixed-length records, and that these records

were viewed as sequential. How are accesses to variable-length records handled?

Are there other file structuring methods? Are there more flexible methods for the

user?

4. Physical File System

Are there physical structuring other than sequential? Are these more efficient in

space? In accesses? We assumed that for each request this module would activate an

access to the disk. What is the request following READ ETHEL RECORD (4) were

READ ETHEL RECORD (3)? Isn't record 3 in the system buffer area already?

5. Allocation Strategy

How are files stored on secondary storage? Are there fragmentation problems when

files are deleted? In other words, is secondary storage being used efficiently?

6. Device Strategy Module

Can this module restructure or reorder requests to match more efficiently the

characteristics of the device on which the information is stored?

In the sections that follow we will explore more general techniques for each of

these levels, techniques that give the user more flexibility and may thus increase the

system's efficiency.

Logical File System (LFS):

 LFS is mapping the structure of the logical records onto linear

byte-string of a PFS(Physical File System) file. It must covert a request for a record

into a request for a byte string.

 In the sample file system of section LFS provides facilities for

direct access, based on record number to any of the records, all of which are of same

length.

 In conventional file systems and data management systems many

additional record structures are supported. These are often called access methods,

such as:

1. Sequentially Structured fixed-length records (sequential and direct

access)

2. Sequentially Structured variable-length records (sequential and direct

access)

3. Sequentially Structured keyed records

4. Multiple keyed records

5. Chained Structured Records

6. Relational or triple structured records

1. Sequentially Structured fixed-length records:

User views his files as a sequence of fixed length records(i.e, all records are the

same length). This structure is useful for storing ‘card-image’, ‘print-image’ and

‘SPOOL’ files.

Sequential fixed-length records (all records l bytes length)

i. Sequential Access:

For sequential access, on each request the user wishes to have the “next” record the

same as reading cards from a card reader. This request would look similar to

READ FILE(ETHEL) NEXT INTO LOCATION(BUFFER)

where the explicit record number is omitted.

In order to implement this, LFS must maintain Current Logical Byte Address

(CLBA) in the AFT entry for the file. When the file is initially opened, the CLBA is

set to 0. Subsequently, after processing each request, the CLBA is updated by

CLBA = CLBA + RL (Record Length)

Where RL is the Record Length.

ii. Direct Access:

For direct access the user explicitly species the record desired.

READ FILE (ETHEL) RECORD (4) INTO LOCATION (BUFFER)

CLBA computed by

CLBA = (RN-1) x RL where RN is designated record number.

2. Sequentially structured variable-length records:

User views his file as a sequence of records of possibly differing lengths.

This structure is useful for storing names, employment histories and printer output.

Sample of Sequentially structured variable-length records

There are various ways of storing these records. Note that it is necessary to

be able to identify the boundaries of each record. For example, how do we know that

there are two separate records, JONES and DONOVAN instead of one record

JONESDONOVAN? The following format can be used to handle this situation. In

this approach the length of each record is stored in the file.

Sequentially structured variable-length records

i. Sequential Access:

Its look like

READ FILE (NAMES) NEXT INTO LOCATION (BUFFER) LENGTH (N)

 Where the variable N is set to the length of the record that was read. The length

of the BUFFER area must be equal to or larger than the largest record in the file.

 Let us assume that the length field 1n is 2bytes long, so that records can be up to

64K bytes long. If the CLBA is always set to the beginning of the length field for

the next record (e.g., it is set to 0 initially), the length N, can be extracted from

the 2byte string at location CLBA. The record itself can then be read as the N-

bytes string at location CLBA+2. Since we can determine the byte address and

length for both steps, the PFS can be used to process these requests. The CLBA

is updated in preparation for the next request by

CLBA = CLBA + 2 + N

ii. Direct Access:

A Direct access request would look like
READ FILE (NAMES) RECORD (3) INTO LOCATION (BUFFER) LENGTH (N)

 The logical byte address for a direct access to a sequentially structured variable

length record is found essentially by sequencing through records until you find

the right record. That is, if record 3 is requested.

 CLBA = l1+2+l2+2

 Where l1and l2 are the length of record l and record 2, and can be found by

accessing these records sequentially.

 Direct access can be very inefficient, but these are several methods for

improving the efficiency, such as the following:

 Keep track of the number and address of the last record requested. If the present

request is a record number larger than the last one accessed, then go forward. If

less, then start sequencing from the beginning of the file.

 Keep a table of record numbers and LBAs.

 Each time a record is accessed its LBA could be kept by the user’s program for

possible future use(e.g., OS/360-NOTE/POINT facility). This would make

possible very fast subsequent accesses.

3. Sequentially structured keyed records:

A different type of access is based on content rather than record number or address.

An example would be a request for the record containing Madnick’s payroll

information. Such single keyed records may be arranged where k1,…kn denote

keys,

e.g., k4 = MADNICK

Sequential single-keyed records

 All records are kept in ascending order based on the keys, i.e, k1, k2, k3, etc, for

example, MADNICK would follow DONOVAN but precede ZIERING.

 The Logical Byte Address for either sequential or direct access may be computed

by searching all records for the one with the correct key. In order to avoid such

massive search, a separate symbol table or index table file may be used to

indicate correspondence between keys and the LBA of the record. In practical

system the Index Table may be divided into levels.

In practical systems the Index Table may be divided into levels. The following

figure depicts the structure used by IBM's Indexed Sequential Access Method

(ISAM). The master index points to the secondary index. The secondary index

contains the starting locations of subsets of the data items.

Every nth record in the data file is left empty for inserts. A request requires one

access to the master index, one access to the secondary index, and a sequential

search of the records in the subset.

An ISAM structuring

Multiple keyed records:

The following four in a record –(ID = 1743, NAME-DONOVAN, SS#=030-34-

2674, JOB=FASTEST PROFESSOR AT MIT) all identify the same person.

Sometimes users wish to organize their data so that they can be referenced by

any one of several keys. This is similar to library indexing of books by title,

author, and subject. The major techniques for this are:

 Multiple Indices (note that the Index tables may exceed the size of the data!)

 Chaining records with the same keys together

4. Chained Structured Records:

The keyed and multiple keyed record structures are not usually offered as part of a

basic file system, but rather are built on top of one. They are data management

systems, and provide facilities for complex record structures. A chained

structured record organization provides a more complex data management

facility.

Eg.

An example can be found in Figure a, which shows the "bill of materials

ie. list of components) for each assembly used to produce a television set. Figure

b presents the same information in a "tree" or "chained" form.

Sample of Chained Structured Records

5. Relational or triple structured records:

Another database organization that may be built on top of a basic file system is a

relational or triple structure (Codd, 1970). Logical records may bear a relation to

other records, e.g., Frank is John’s father. Consider the following table.

RECORD 1 RELATION RECORD 2

FRANK FATHER JOHN

JOHN BROTHER PAUL

JOHN FATHER JAMES

 Questions that a user may ask of such a system are:

 Who is JAMES FATHER (i.e., ?-FATHER-JAMES)

 Name all the FATHERS (i.e., ?FATHER-?)

Physical File System:

 The primary function of the PFS is to perform the mapping of Logical Byte

Addresses into Physical Block Addresses. The Logical File System calls the

Physical File System by passing the logical byte address and length of the

information requested.

The PFS may first call the Allocation Strategy Module (ASM)(if a write request)

and then the Device Strategy Module (DSM) directly.

The PFS keeps track of the mapping from logical byte Address to the blocks of

physical storage.

(physical block address = first physical block of file + Logical byte address / block

size) simple mapping function was a consequence of the simple physical storage

structure of the file.

Three additional considerations may be

1. Minimizing I/O Operations.

2. Allowing Logical record size independent of Physical Block Size

3. Allowing noncontiguous allocation of file space.

Minimizing I/O Operations:

 If all the records of file ETHEL were to be read sequentially, it would require

seven I/O operations. The entire file occupies only four physical blocks, we

might suspect that we could reduce the number of I/O operations of eliminating

redundant operations. For each I/O read operation a physical block is copied into

a buffer in main memory. Before reading a physical, check whether the block is

already in buffer.

Allowing Logical record size independent of physical Block Size:

 A physical record must hold some integral number of logical records, to

process logical records of lengths that are not even factor of block length. Many

storage devices allow a certain amount of flexibility in the format of the

individual tracks.

Revised version of steps 5 and 7

Allowing noncontiguous allocation of file space:

 Contiguous allocation of file space is not practically possible always. If the

physical blocks of a file are not contiguous, a different algorithm is needed to

map from logical byte address to physical block number. Two popular techniques

are

(1) Chained blocks

(2) File maps

Chained Blocks:

 In a chained blocks mapping, each physical block contains the address of the

next “logically contiguous” block. The Basic File Directory entries contain the

address of the file physical blocks , but subsequent block addresses are found by

means of the address pointer.

 The address pointer may be stored within the physical block, the chained

blocks approach is efficient for sequential access to the blocks.

Chained Blocks

File Maps:

 Another approach to noncontiguous allocation is to use a File Map Table to

map each Logical Block Address to its physical block address. This file map may

be stored as part of the entry in the BFD or in a separate block.

Physical Block Address = File Map (Logical Byte Address / Block Size)

File Map

	SIMPLE FILE SYSTEM
	File Directory Database
	Steps to Be Performed

	Fig. 5.4
	GENERAL MODEL OF A FILE SYSTEM
	File Directory Maintenance
	Symbolic File System
	Access Control Verification
	Logical File System
	Physical File System
	Allocation Strategy Module
	I/O Scheduler and Device Handler
	Calls and Returns between File System Modules
	Shortcomings of Simple File System Design
	1. Symbolic File System
	2. Access Control Verification
	3. Logical File System
	4. Physical File System
	5. Allocation Strategy
	6. Device Strategy Module

