
1

UNIFIED MODELING LANGUAGE

LESSON � 1

INTRODUCTION

 A successful software organization is one that consistently deploys quality

software that meets the needs of its users. In this lesson we will discuss the importance

of modeling, the four principles of modeling and the object-oriented modeling. Also in

this lesson we will have an introduction about the overview of the UML, the three steps

to understanding the UML, the software architecture and the software development

process.

MODEL :

 A model is a simplification of reality. In other words a model provides the

blueprint of a system. Building a model is to better understand the system that is to be

developed. Complex systems need modeling because it cannot be comprehended in its

entirety.

1.1 PRINCIPLES OF MODELING

 There are four basic principles of modeling. The include :

1. The choice of what models to create has a profound influence on how a

problem is attacked and how a solution is shaped.

2

The right models will brilliantly illuminate the most crucial development

problems offering insight that simply could not gain others. For example of a system is

built through the eyes of a database developer, he will likely focus on entity-relationship

models that push behavior into triggers and stored procedures. If the same system is built

through the eyes of structured analyst, he will likely end up with models that are

algorithm-centric, with data flowing from process to process. If the same system is built

through the eyes of an object-oriented developer, he will end up with classes and the

patterns of interaction that direct how those classes work together.

 Any of the above approaches might be right for a given application and

development culture. The point is that each view leads to a different kind of system with

different costs and benefits.

 2. Every model may be expressed at different levels of precision.

In software models, sometimes a quick and simple executable model of the user

interface might be needed and sometimes complex networking bottlenecks might be

needed. In any case, the best kind of models are those that lets the modeler choose the

degree of detail, depending on who is doing the viewing and why they need to view it.

 3. The best models are connected to reality.

It is best to have models that have a clear connection to reality, and where the

connect is weak, to know exactly how those models are divorced from the real world. All

models simplify reality. The trick is to be sure that your simplifications don�t hide any

important details.

3

In structured analysis techniques, there is a basic disconnect between its analysis

model and the system�s design model In object-oriented systems, it is possible to connect

all the nearly independent views of a system into one semantic whole.

4. No single model is sufficient. Every non-trivial system is best approached

 through a small set of nearly independent models.

To understand the architecture of a system which uses object oriented approach,

we need several views, namely.,

(a) A Use Case View � Exposing the requirements of the system

(b) A Design View � Capturing the vocabulary of problem space and solution

space

(c) A Process View � modeling the distribution of the system�s processes and

threads

(d) An Implementation View � Addressing the physical realization of the system

(e) A Deployment view � Focusing on system engineering issues.

Together these views represent the blue print of software.

1.2 OBJECT � ORIENTED MODELING

 In software the two most common ways to approach a model are

1. Algorithmic Approach

In this approach, the main building block of all software is the procedure or

function. This view leads developers to focus on issues of control and the decomposition

4

of larger algorithms into smaller ones. As requirements change and the system grows,

systems built with an algorithmic focus turn out to be very hard to maintain..

2. Object � Oriented Approach

In this approach, the main building block of all software system is the object or

class. An object is an thing generally drawn from the vocabulary of problem space or the

solution space. A class is a description of a set of common objects.

The Object-Oriented approach to software development is decidedly a part of the

mainstream simply because it has proved to be a value in building systems in all sorts of

problem domains and encompassing all degrees of size and complexity. Object-Oriented

development provides the conceptual foundation for assembling systems out of

components using technology such as Java Beans or COM+.

1.3 INTRODUCTION TO UML

 Visualizing, specifying, constructing and documenting Object-Oriented systems is

exactly the purpose of the Unified Modeling Language. The Unified Modeling Language

is a standard language for writing software blueprints.

 The UML is a language for

Visualizing :

 The UML is more than just a bunch of graphical symbols. Rather behind each

symbol in the UML notation is a well-defined semantics. In this manner, one developer

can write a model in the UML, and another developer, or even another tool can interpret

that model unambiguously.

5

Specifying :

 Building models that are precise, unambiguous, and complete. In particular, the

UML addresses the specification of all the important analysis, design, and

implementation decisions that must be made in developing and deploying a software-

intensive system.

Constructing :

 In addition to direct mapping the UML is sufficiently expressive and

unambiguous to permit the direct execution of models, the simulation of systems, and the

instrumentation of running systems.

Documenting :

 The UML addresses the documentation of a system�s architecture and all of its

details. The documents include.,

Requirements
 Architecture
 Design
 Source Code
 Project Plans
 Tests
 Prototypes
 Releases

The UML also provides a language for expressing requirements and for tests.

Finally, the UML provides a language for modeling the activities of project planning and

release management.

6

Uses Of UML

 The UML is intended primarily for software-intensive systems. It has been used

effectively for such domains as

i) Enterprise Information Systems

ii) Banking and Financial Services

iii) Telecommunications

iv) Transportation

v) Defence / Aerospace

vi) Retail

vii) Medical Electronics

viii) Scientific

ix) Distributed Web-Based Services

1.4 CONCEPTUAL MODEL OF THE UML

To understand the UML, one has to form a conceptual model of the language, and

this requires learning three major elements : (i) The UML�s Basic Building Blocks, (ii)

The Rules that dictate how those Building Blocks may be put together and (iii) Some

Common Mechanisms that apply throughout the UML.

7

Building Blocks Of The UML

 The vocabulary of the UML encompasses three kinds of building blocks :

1. Things

2. Relationships

3. Diagrams

Things are the abstractions that are first class citizens in a model; relationships tie

these things together; diagrams group interesting collections of things.

Things :

 There are four kinds of things in the UML. They include :

(a) Structural Things :

Structural things are the nouns of UML models. These are mostly static parts of

a model, representing elements that are either conceptual or physical. In all there are

seven kinds of structural things.

(i) A Class : is a description of a set of objects that share the same attributes,

operations, relationships and semantics. Graphically, a class is rendered as a

rectangle usually including its name, attributes and operations.

Window

origin
size

open()
close()
move()
display()

name of the class

attributes of the class

operations of the class

8

(ii) An Interface : is a collection of operations that specify a service of a class

or component. An interface therefore describes the externally visible behavior of

that element. Graphically an interface is rendered as a circle together with its

name.

(iii) A Collaboration : defines an interaction and is a society of roles and other

elements that work together to provide some cooperation. Graphically, a

collaboration is rendered as an ellipse with dashed lines, usually including only its

name.

(iv) An Use Case : is a description of set of sequence of actions that a system

performs. A use case is sued to structure the behavioral things in a model.

Graphically, an use case is rendered as an ellipse with solid lines, usually

including only its name.

ISpelling

Chain of
responsibility

Place order

9

(v) An Active Class : is a class whose objects own one or more processes or

threads and therefore can initiate control activity. Graphically, an active class is

rendered just like a class, but with heavy lines, usually including its name,

attributes & operation.

(vi) A Component : is a physical and replaceable part of a system that

conforms to and provides the realization of a set of interfaces. Graphically, a

component is rendered as a rectangle with tabs, usually including only its name.

(vii) A Node : is a physical element that exists at runtime and represents a

computational resource, generally having at least some memory and, often

processing capability. Graphically, a node is rendered as a cube, usually

including only its name.

EventManager

suspend()
flush()

Orderform.java

Server

10

(b) Behavioral Things

Behavioral things are the dynamic parts of UML models. These are the verbs of a

model, representing behavior over time and space. In all there are two primary kinds of

behavioral things. They include :

(i) An interaction : is a behavior that comprises a set of messages exchanged

among a set of objects within a particular context to accomplish a specific

purpose

(ii) A State Machine : is a behavior that specifies the sequence of states an

object or an interaction. Graphically a state is rendered as a rounded rectangle,

usually including its name and its sub states, if any.

(c) Grouping Things

Grouping things are the organizational parts of UML models. There is one

primary grouping thing, namely Packages.

A Package is a general-purpose mechanism for organizing elements into groups.

Structural things, behavioral things and even other grouping things may be placed in a

package. Graphically, a package is rendered as a tabbed folder, usually including only its

name and sometimes its contents.

display
Messages

Waiting

11

(d) Annotational Things :

Annotational things are the explanatory parts of UML models. These are

comments. Graphically, a note is rendered as a rectangle with a dog-eared corner,

together with a textual or graphical comment.

Relationships :

 There are four kinds of relationships in the UML

 (a) Dependency

 Is a semantic relationship between two things in which a change to one

thing may affect the semantics of the other. Graphically a dependency is rendered as a

dashed line, possibly directed, and occasionally including a label.

Business Rules

return copy to
self

12

0..1

employer

 *

employee

 (b) Association

 An association is a structural relationship that describes a set of links.

Graphically, an association is rendered as a solid line, often containing other adornments,

such as multiplicity and role names.

 (c) Generalization

 A generalization is a specialization / Generalization relationship in which

objects of the specialized element (the child) are substitutable for objects of the

generalized elements (the parent). Graphically, a generalization relationship is rendered

as a solid line with a hollow arrowhead pointing to the parent.

 (d) Realization

 A realization is a semantic relationship between classifiers, wherein one

classifier specifies a contract that another classifier guarantees to carry out. Graphically,

a realization relationship is rendered as a cross between a generalization and a

dependency relationship.

13

Diagrams In The UML

 A diagram is the graphical presentation of a set of elements, most often rendered

as a connected graph of vertices and relationships. In UML there are nine diagrams.

 1. Class Diagrams

 Class Diagrams shows a set of classes, interfaces, and collaborations and

their relationships. Class diagrams are the most common diagrams found in modeling

object � oriented systems.

 2. Object Diagrams

 An object diagram shows a set of objects and their relationships. Object

diagrams are used to illustrate data structures, the static snapshots of instances of the

things found in class diagram.

 3. Component Diagrams

 A component diagram shows a set of components and their relationships.

Component diagrams are related to class diagrams in that a component typically maps

one or more classes, interfaces or collaborations.

 4. Deployment Diagrams

 A deployment diagram shows a set of nodes and their relationships.

Deployment diagrams are related to component diagrams in that a node typically encloses

one or more components.

 5. Use Case Diagrams

 An use case diagram shows a set of use cases and actors (a special kind of

class) and their relationships. Use Case diagrams are especially important in organizing

and modeling the behaviors of a system.

14

 6. Sequence Diagrams

 A sequence diagram is an interaction diagram that emphasizes the time

ordering of messages. A sequence diagram shows a set of objects and the messages sent

and received by those objects.

 7. Collaboration Diagrams

 A collaboration diagram is an interaction diagram that emphasizes the

structural organization of the objects that send and receive messages. A collaboration

diagram shows a set of objects, links among these objects, and messages sent and

received by those objects.

 8. Statechart Diagrams

 A statechart diagram shows a state machine, consisting of states,

transitions, events and activities.

 9. Activity Diagram

 An Activity diagram shows the flow from activity to activity within a

system. Activity diagrams emphasize the flow of control among objects.

1.5 COMMON MECHANISM IN THE UML

 A building is made simpler and more harmonious by the conformance to a pattern

of common features. In UML there are four common mechanisms that apply consistently

throughout the language. They are :

 1. Specification

 The UML�s specifications provide a semantic backplan that contains all

the parts of all the models of a system, each part related to one another in a consistent

fashion.

15

 2. Adornments

 Most elements in the UML have a unique and direct graphical notation

that provides a visual representation of the most important aspects of the element. Every

element in the UML�s notation starts with a basic symbol, to which can be added a

variety of adornments specific to that symbol.

 The above figure shows a class Transaction adorned to indicate that it is an

abstract class with two public operations + execute () , + rollback (), one protected

operation # priority () and one private operation � timestamp ().

 3. Common Divisions

 In object-oriented systems modeling, the view often gets divided in atleast

a couple of ways. Graphically, the UML distinguishes an object by using the same

symbol as its class and then simply underlying the objects� name.

Transaction

+ execute()
+ rollback()
priority ()
- timestamp ()

Customer

name
address
phone

Jan : Customer

: Customer

Elyse

16

 4. Extensibility Mechanism

 The UML provides a standard language for writing software blueprints,

but it is not possible for UML to express all possible things of all models across all

domains. The UML�s extensibility mechanisms include :

(a) Stereotypes : extends the vocabulary of the UML, allowing to

create new kinds of building blocks.

(b) Tagged Value : Extend the properties of a UML building block,

allowing to create new information in that element�s specification.

(c) Constraint : extends the semantics of a UML building block,

allowing to add new information in that element�s specification.

In the above diagram <<exception>> is called as the stereotype.

{version = 3.2 author = abc} is known as the tagged value

{Ordered} is termed as the constraint (all additions are done in order)

<< exception >>
Overflow

EventQueue
{version = 3. 2
author = abc}

add ()
remove ()
flush ()

{ordered}

17

LESSON � 2

BASIC STRUCTURAL MODELING

2.1 CLASSES

 Classes are the most important building block of any object-oriented system. A

class is a description of a set of objects that share the same attributes, operations,

relationships and semantics. A class implements one or more interfaces. Well-structured

classes have crisp boundaries and form a part of a balanced distribution of responsibilities

across the system.

 Every class must have a name that distinguishes it from other classes. A name is

a textual string. That name alone is known as a simple name; a path name is the class

name prefixed by the name of the package in which that class lives. Graphically, a class

is rendered as a rectangle.

Attributes :

 An Attribute is a named property of a class that describes a range of values that

instances of the property may hold. Graphically, attributes are listed in a compartment

path names

attributes

operations

nameShape

origin

move()
resize()
display()

Temperature
Sensor

Wall

Customer

simple names

Business Rules :: FraudAgent

Java::awt::Rectangle

18

just below the class name. Typically, capitalize the first letter of every word in an

attribute name except the first letter.

Operations :

 An operation is the implementation of a service that can be requested from any

object of the class to affect behavior. A class may have any number of operations or no

operation at all. Graphically, operations are listed in a compartment just below the class

attributes.

 An operation can be specified by stating its signature, covering the name, type

and default value of all parameters. To better organize long lists of attributes and

operations, it can also prefix each group with a descriptive category by using stereotypes.

operations & their
signatures

attributes & their
data types possibly
with a default value

Customer

name
address
phone
birthDate

Wall

height : Float
width : Float
thickness : Float
isLoadBearing : Boolean = false

attribute

Rectangle

add()
grow()
move()
isEmpty()

TemperatureSensor

reset()
setAlarm(t : Temperature)
value() : Temperature

operations

19

Responsibilities :

 A responsibility is a contract or an obligation of a class. When modeling classes,

a good starting point is to specify the responsibilities of things in the vocabulary.

Graphically, responsibilities can be drawn in a separate compartment at the bottom of the

class icon. Responsibilities are just free-form text. In practice, a single responsibility is

written as a phrase, a sentence, or (at most) a short paragraph.

stereotype
More
operations are
there which are
not shown

FraudAgent

<<constructor>>
new()
new(p : Policy)
<<process>>
process(o : Order)

�..

<<query>>
isSuspect(o : Order)
isFraudulent()
<<helper>>
validateOrder(o : Order)

FraudAgent

Responsibilities

-- determine the risk of a
 customer order

-- handle customer specific
 criteria for fraud

20

2.2 RELATIONSHIPS

 A relationship is a connection among things. In object-oriented modeling, the

three most important relationships are

(a) Dependencies

(b) Generalizations

(c) Associations

Dependency :

 A dependency is a using relationship that states that the change in specification of

one thing may affect another thing that uses it, but not necessarily the reverse.

Graphically, a dependency is rendered as a dashed, directed line, directed to the thing

being depended on. Dependencies are used when we want to show one thing using

another.

Generalization :

 A generalization is a relationship between a general thing (called the super class

or parent) and a more specific kind of that thing (called the subclass or child).

dependency relationship
[If the class channel
changes, the operations in
FlimClip also changes]

FilmClip

name

playOn(c : Channel)
start()
stop()
reset()

Channel

21

Graphically, generalization is rendered as a solid directed line with a large open

arrowhead, pointing to the parent.

 Generalization is used among classes and interfaces to show inheritance

relationships. A generalization can have a name, although names are rarely needed.

Association :

 An association is a structural relationship that specifies that objects of one thing

are connected to objects of another. Graphically, an association is rendered as a solid line

Shape

origin

move()
resize()
display() ()

Rectangle

corner : Point

Circle

radius : Float

Polygon

points : List

display()

Square

base class

Leaf class

22

connecting the same or different classes. Use associations to show structural

relationships. There are four adornments that apply to associations. They include :

Name : An association can have a name to describe the nature of the

 relationship.

 Role : a role is just the face the class at the near end of the association presents

to the class at the other end of the association.

 Multiplicity : Stating how many objects may be connected across an instance of

 an association is termed as multiplicity. This multiplicity is written

 as an expression that evaluates to a range of values.

1 -- One

0 .. 1 -- Zero to One

0 .. * -- Many

1 .. * -- One or Many

Works for Person Company

name Name�s direction

association

role
employeremployee

Person Company

1..
employeremployeePerson Company

multiplicity

Multiplicity

23

 Aggregation : Showing relationships between classes of whole and classes of part

may be termed as Aggregation. Aggregation is a special kind of

association and is specified by adorning a plain association with an

open diamond at the whole end.

2.3 Common Mechanisms

 Notes : A note that renders a comment has no semantic impact, meaning that its

contents do not alter the meaning of the model to which it is attached. This is why notes

are used to specify things like requirements, observations, reviews, and explanations, in

addition to rendering constraints.

 A note may contain any combination of text or graphics. If the implementation

allows it, live URL can be put inside a note, or even link to or embed another document.

In this way UML allows to organize all the artifacts that might be generated or used

during development.

 The UML specifies one standard stereotype that applies to notes � requirements.

This stereotype names a common category of notes � those used to state some

responsibility or obligation.

*

1

Company

Department

aggregation
whole

part

24

Other Adornments :

 Adornment are textual or graphical items that are added to an element�s basic

notation and are used to visualize details from the elements specification. Most

adornments are rendered by placing text near the element of interest or by adding a

graphic symbol to the basic notation. However, sometimes there is a need to adorn an

element with more details than can be accommodated by simple text or graphics. In the

case of such things as classes, components, and nodes, extra compartment can be added

below the usual compartments to provide this information, as shown in the following

figure.

Publish this component
In the project repositry
After the next design review

See http://www.gameplan.com
For an example of this applet

 See encrypt.doc for
 Details about this
 algorithm

simple text

Embedded URL

Link to document

Transaction

addActive()
rollBack()

Exceptions
emptyTransaction
noSuchAction
resourceLocked

Client

bill.exe
report.exe
contacts.exe

Named
compartment

Anonymous
compartment

25

Stereotypes :

 The UML provides a language for structural things, behavioral things, grouping

things and notational things. These four basic kinds of things address the overwhelming

majority of the systems needs to the model. However sometimes there is a need to

introduce new things that speak the vocabulary of the domain. In its simplest form, a

stereotype is rendered as a name enclosed by guillemots (for example, <<name>>) and

placed above the name of another element.

As a visual cue, an icon may be defined for the stereotype and render the icon to

the right of the name or use that icon as the basic symbol for the stereotyped item. All

three of these approaches are illustrated in the following figure.

Tagged Values :

 Everything in the UL has its own set of properties; classes have names, attributes,

and operations; associations have names and two or more ends; and so on. With

Stereotypes, new things can be added; with tagged values new properties can be added.

Tags can be defined for existing elements or define tags that apply to individual

stereotypes. In simplest form, tagged value is rendered as a string enclosed by brackets

HumiditySensor
<<metaclass>>
ModelElement

<<exception>>
Underflow

Named stereotype
Named stereotype
with Icon

Stereotyped
element as Icon

26

and placed below the name of another element. The following figure explains this

concept.

 In the above figure the values within the curl braces ({ }) are termed as tagged

values.

2.4 DIAGRAMS

 When modeling something, there is a need to create a simplification of reality so

that the person can better understand the system he/she is developing. Using the UML,

one can build his/her models from basic building blocks, such as classes, interfaces,

collaborations, components, nodes, dependencies, generalizations, and associations.

 Diagrams are the means by which he/she views these building blocks. A diagram

is a graphical presentation of a set of elements, most often rendered as a connected graph

of vertices (things) and arcs (relationships).

 A system is a collection of subsystems organized to accomplish a purpose and

described by a set of models, possibly from different viewpoints. A subsystem is a

grouping of elements, of which some constitute a specification of the behavior offered by

the other contained elements. A model is a semantically closed abstraction of a system,

meaning that it represents a complete and self-consistent simplification of reality, created

Server
{processors = 3}

<<library>>
trans.dll

{Server only}

27

in order to better understand the system. A diagram is the graphical presentation of a set

of elements, most often rendered as a connected graph of vertices (things) and arcs

(relationships).

 In modeling real systems, no matter what the problem domain, same kinds of

diagrams are created, because they represent common views into common models.

Typically, the static parts of a system are viewed using one of the four following

diagrams.

1. Class diagram

2. Object diagram

3. Component diagram

4. Deployment diagram

To view the dynamic parts of the system, the following five diagrams are used.

1. Use case diagram

2. Sequence diagram

3. Collaboration diagram

4. Statechart diagram

5. Activity diagram

In practice, all the diagrams created will be two-dimensional, meaning that they

are just flat graphs of vertices and arcs that are drawn on a sheet of paper, a whiteboard,

the back of an envelope, or on a computer display. The UML allows to create three-

dimensional diagrams, meaning that they are graphs with depth, allowing to swim

28

through a model. Some virtual reality research groups have already demonstrated this

advanced use of the UML.

2.4.1 STRUCTURAL DIAGRAMS :

 The UML�s four structural diagrams exist to visualize, specify, construct, and

document the static aspects of a system. One can imagine of the static aspects of a

system as representing its relatively stable skeleton and scaffolding. Just as the static

aspects of a house encompass the existence and placement of such things as walls, doors,

windows, pipes, wires and vents, so too do the static aspects of a software system

encompass the existence and placement of such things as classes, interfaces,

collaborations, components, and nodes.

Class Diagram :

 A class diagram shows a set of classes, interfaces, and collaborations and their

relationships. Class diagrams are the most common diagrams found in modeling object-

oriented systems. Class diagrams are used to illustrate the static design view of a system.

Class diagrams that include active classes are used to address the static process view of a

system.

Object Diagram :

 An object diagram shows a set of objects and their relationships. Object diagrams

are used to illustrate data structures, the static snapshots of instances of the things found

in class diagrams. Object diagrams address the static design view or static process view

29

of a system just as do class diagrams, but from the perspective of real or prototypical

cases.

Component Diagram :

 A component diagram shows a set of components and their relationships.

Component diagrams are used to illustrate the static implementation view of a system.

Component diagrams are related to class diagrams in that a component typically maps to

one or more classes, interfaces or collaborations.

Deployment Diagram :

 A deployment diagram shows a set of nodes and their relationships. Deployment

diagrams are used to illustrate the static deployment view of an architecture. Deployment

diagrams are related to component diagrams in that a node typically encloses one or more

components.

2.4.2 BEHAVIORAL DIAGRAMS

 The UML�s five behavioral diagrams are used to visualize, specify, construct and

document the dynamic aspects of a system. The dynamic aspects of the systems are

imagined as representing its changing parts. Just as the dynamic aspects of a house

encompass airflow and traffic through the rooms of a house, so too do the dynamic

aspects of a software system encompass such things as the flow of messages over time

and the physical movement of components across a network.

30

Use Case Diagram :

 A use case diagram shows a set of use cases and actors (a special kind of class)

and their relationships. Use case diagrams are used to illustrate the static use case view

of a system. Use case diagrams are especially important in organizing and modeling the

behavior of a system.

Sequence Diagram :

 A sequence diagram is an interaction diagram that emphasizes the time ordering

of messages. A sequence diagram shows a set of objects and the messages sent and

received by those objects. The objects are typically named or anonymous instances of

classes, but may also represent instances of other things, such as collaborations,

components and nodes. Sequence diagrams are used to illustrate the dynamic view of a

system.

Collaboration Diagram :

 A collaboration diagram is an interaction diagram that emphasizes the structural

organization of the objects that send and receive messages. A collaboration diagram

shows a set of objects, links among those objects and messages sent and received by

those objects. The objects are typically named or anonymous instances of classes, but

may also represent instances of other things, such as collaborations, components, and

notes. Collaboration diagrams are used to illustrate the dynamic view of a system.

 Collectively, the sequence diagrams and collaboration diagrams are termed as

Interaction Diagram. All sequence diagrams and collaborations are interaction diagrams,

31

and an interaction diagram is either a sequence diagram or a collaboration diagram. Also

sequence and collaboration diagrams are isomorphic, meaning that conversion from one

to another without loss of information is possible.

Statechart Diagram :

 A statechart diagram shows a state machine, consisting of states, transitions,

events and activities. Statechart diagrams are used to illustrate the dynamic view of a

system. They are especially important in modeling the behavior of an interface, class or

collaboration. Statechart diagrams emphasize the event-ordered behavior of an object,

which is especially useful in modeling reactive systems.

Activity Diagram:

 An activity diagram shows the flow from activity to activity within a system. An

activity shows a set of activities, the sequential or branching flow from activity to

activity, and objects that act and are acted upon. Activity diagrams are used to illustrate

the dynamic view of a system. Activity diagrams are especially important in modeling

the function of a system. Activity diagrams emphasize the flow of control among

objects.

2.5 CLASS DIAGRAMS

 A class diagram is a diagram that shows a set of classes, interfaces, and

collaborations and their relationships. Graphically, a class diagram is a collection of

vertices and arcs. A class diagram is just a special kind of diagram and shares the same

32

common properties as do all other diagrams � a name and graphical content that share a

projection into a model. What distinguishes a class diagram from all other kinds of

diagrams is its particular content. A typical class diagram is shown below.

1..* 1..*

* *
{subset}

member 1..* 1 manager

Company

Department

name : Name

Office

address : String
voice : Number

Person

name : Name
employeId : Integer
title : String

getPhoto()
getSoundBite()
getContactInformation()
getPersonalRecords()

Headquarters

ContactInformation

address : String

PersonnelRecord

taxId
employmentHistory
salary

ISecurityInformation

 Location

33

Class diagrams commonly contain the following things :

! Classes

! Interfaces

! Collaborations

! Dependency, generalization, and association relationships.

 Like all other diagrams, class diagrams may contain notes and constraints. Class

diagrams may also contain packages or subsystems, both of which are used to group

elements of the model into larger chunks. Class diagrams are important not only for

visualizing, specifying and documenting structural models, but also for constructing

executable systems through forward and reverse engineering.

2.5.1 COMMON USES :

 Class diagrams are used to model the static design view of a system. This view

primarily supports the functional requirements of a system � the services the system

should provide to its end users. When modeling the static design view of a system,

typically class diagrams are used in one of three ways described below :

1. To model the vocabulary of a system

Modeling the vocabulary of a system involves making a decision about

which abstractions are parts of the system under consideration and which

fall outside its boundaries.

34

2. To model simple collaborations

A collaboration is a society of classes, interfaces, and other elements that

work together to provide some cooperative behavior that�s bigger than the

sum of all the elements.

To model a collaboration,

Identify the mechanism that is to be modeled. A mechanism represents

some function or behavior of the part of the system that results from the

interaction of a society of classes, interfaces, and other things.

For each mechanism, identify the classes, interfaces, and other

collaborations that participate in this collaboration. Identify the

relationships among these things, as well

Use scenarios to walk through these things. Along the way, missing parts

will be discovered.

Be sure to populate these elements with their contents. For classes, start

with getting a good balance of responsibilities. Then, over time, turn these

into concrete attributes and operations.

 3. To model a logical database schema

Think of a schema as the blueprint for the conceptual design of a database.

In many domains, there is a need to store persistent information in a

relational database or in an object-oriented database. Schemas are

modeled for these databases using class diagrams.

35

 To model a schema,

Identify those classes in the model whose state must transcend the lifetime

of their applications.

Create a class diagram that contains these classes and mark them as

persistent (a standard tagged value).

Expand the structural details of these classes. In general, this means

specifying the details of their attributes and focusing on the associations

and their cardinalities that structure these classes.

Watch for common patterns that complicate physical database design,

such as cyclic associations, one-to-one associations, and n-ary

associations. Where necessary, create intermediate abstractions to

simplify logical structure.

Consider also the behavior of these classes by expanding operations that

are important for data access and data integrity.

Where possible, use tools to help transform logical design into a physical

design.

36

LESSON � 3

ADVANCED STRUCTURAL MODELING -- INTRODUCTION

 In this lesson we will be discussing classifiers, special properties of attributes and

operations and different kinds of classes. Also we will look at advanced relationships,

modeling webs of relationships, interfaces, types, roles and realization, packages,

visibility, importing and exporting, instances and objects, modeling object structures and

forward and reverse engineering in terms of object diagrams.

3.1 ADVANCED CLASSES

 Classes are indeed the most important building block of any object-oriented

system. However, classes are just one kind of an even more general building block in the

UML � classifiers. A classifier is a mechanism that describes structural and behavioral

features. Classifiers include classes, interfaces, datatypes, signals, components, nodes,

use cases and subsystems. Classifiers have a number of advanced features beyond the

simpler properties of attributes and operations described in the previous section.

 The most important kind of classifier in the UML is the class. A class is a

description of a set of objects that share the same attributes, operations, relationships, and

semantics. Classes are not the only kind of classifier. The UML provides a number of

other kinds of classifiers and they include :

37

Class : is a description of a set of objects that share the same attributes,

operations relationships and semantics.

Interface : A collection of operations that are used to specify a service of a

class or a component.

Datatype : A type whose values have no identity, including primitive built-in

types (numbers & strings), as well as enumeration types (Boolean)

Signal : The specification of an asynchronous stimulus communicated

between instances

Component : A physical and replaceable part of a system that conforms to and

provides the realization of a set of interfaces.

Node : A physical element that exists at runtime and often has processing

capability.

Use Case : A description of a set of a sequence of actions.

Subsystem : A grouping of elements of which some constitute a specification of

the behavior offered by the other contained elements.

class
Shape

origin

move()
resize()
display()

IUnknown

interface
datatype

<<type>>
Int

{values range from
-2**31-1 to +2**31}

signal

<<signal>>
OffHook

node

Egb_server

use case

Process
loan

component

kernell32.dll

subsystem

<<subsystem>>
Customer Service

subsystem

38

Visibility

 The visibility of a feature specifies whether it can be used by other classifiers. In

the UML there are three levels of visibility. They include :

1. public : Any outside classifier with visibility to the given classifier can

 use the feature; specified by prepending the symbol +

 2. protected : Any descendant of the classifier can use the feature; specified by

 prepending the symbol #

 3. private : Only the classifier itself can use the feature; specified by

 prepending the symbol �

 When a visibility feature is specified generally the implementation details are

hidden and expose only features that are necessary to carry out the responsibilities of the

abstraction. If a feature is not adorned with a symbol, then it is assumed to be public.

The UML�s visibility property matches the semantics common among most programming

languages, including C++, Java, Ada and Eiffel.

Toolbar

currentSelection : Tool
toolCount : Integer

+ pickItem(i : Integer)
+ addTool(t : Tool)
checkOrphans()
- compact()

39

Scope

 Another important detail that can be specified for a classifier�s attributes and

operations is its owner scope. The owner scope of a feature specifies whether the feature

appears in each instance of the classifier or whether there is just a single instance of the

feature for all instances of the classifier. In the UML, two kinds of owner scope can be

specified.

 1. instance : Each instance of the classifier holds its own value for the feature

 2. classifier : There is just one value of the feature for all instances of the

 classifier

Abstract, Root, Leaf and Polymorphic Elements

 In the UML, abstract, root and leaf classes and also polymorphic elements can be

drawn giving differentiation. They are discussed below.

Abstract class : They may not have direct instances. Abstract

classes can be specified by writing its name in

italics

Leaf class : If a class is specified with no further children, then

it is called a leaf class

Root class : If a class is specified with no parents then it is

called a root class

Polymorphic operation : In a hierarchy of classes, if operations are specified

 with the same signature at different points in the

hierarchy. In the runtime the operation in the parent

40

is overridden by the child operation. This process is

called polymorphic operation.

Abstract Operation : Icon : : display() in the above figure is abstract,

meaning that it is incomplete and requires a child to

supply an implementation operation. Abstract

operation is written in Italics in the UML

Leaf Operation : Icon : : getID() is a leaf Operation, meaning that

the operation is not polymorphic and may not be

overridden. {leaf} is also designated.

Icon
 {root}

origin : Point

display()
getID() : Integer {leaf}

RectangularIcon

height : Integer
width : Integer

ArbitraryIcon

edge : LineCollection

isInside(p : Point) : Boolean

Button

display()

OkButton
{leaf}

display()

41

Multiplicity

 The number of instances a class may have is called its multiplicity. Multiplicity is

a specification of the range of allowable cardinalities an entity may assume.

 Multiplicity applies to attributes, as well. Multiplicity of an attribute is specified

by writing a suitable expression in brackets just after the attribute name, as shown in the

above figure.

Attributes

 Apart from the usual representation of an attribute, visibility, multiplicity and also

type, initial value and changeability of each attribute can also be specified. The syntax of

an attribute in the UML is

 [visibility] name [multiplicity] [: type] [= initial_value] [{property_string}]

The following are legal attribute declarations:

 origin name only

 + origin visibility and name

 origin : Point name and type

 head : *Item name and complex type

 name[0..1] : String name, multiplicity and type

 origin : Point = (0,0) name, type and initial value

NetworkController 1

ConsolePort[2..*] : Port

ControlRod 3

multiplicity

42

 id : Integer {frozen} name and property

There are three defined properties that can be used with attributes.

 1. changeability

 There are no restrictions on modifying the attribute�s value

 2. addOnly

 For attributes with a multiplicity greater than one, additional values may

be added. But once created, a value may not be removed or altered

 3. frozen

 The attribute�s value may not be changed after the object is initialized.

Unless otherwise specified, attributes are always changeable.

Operations

 Apart from the usual representation of operation there can be other things that can

be added to it namely, visibility, parameters, return type, concurrency semantics and

other properties of each operation. The syntax of an operation in the UML is

 [visibility] name [(parameter_list)] [: return_type] [{property_string}]

The following are legal operations

 display name only

 + display visibility and name

 set(n :Name, s:String) name and parameters

 getID() : Integer name and return type

 restart() {guarded} name and property

43

 Collectively the name of an operation plus its parameter is called the operation�s

signature. In an operation�s signature, zero or more parameters can be provided, each of

which follows the syntax

 [direction] name : type [= default_value]

where direction may be

 in An input parameter; may not be modified

 out An output parameter; may be modified to communicate

information to the caller

 inout An input parameter; may be modified

 In addition to the leaf property described earlier for operations, there are four

other defined properties that can be used along with operations.

 1. isQuery Execution of the operation leaves the state of the system

unchanged

 2. sequential Callers must coordinate outside the object so that only one flow is

in the object at a time

 3. guarded The semantics and integrity of the object is guaranteed in the

presence of multiple flows.

 4. concurrent Multiple flows of control is enabled.

Template Classes

 A template is a parameterized element. Template classes are defined as a family

of classes or template function defined by a family of functions. A template includes slot

44

for classes, objects and values. A template cannot be used directly, instead it should be

initiated first.

 Implicit binding declares a class to provide the name of the source class.

Explicitly binding uses a dependency stereotyped as <<bind>>, which specifies that the

source instantiates the target template using the actual parameters. Template class

rendered as an ordinary class, with an additional dashed box in the upper-right corner of

the class icon, which lists the template parameters as shown in the above figure.

3.2 ADVANCED RELATIONSHIPS

 When modeling the things that form the vocabulary of the system, there must also

model how those things stand in relationship to one another., Relationships can be

complex, however. Visualizing, specifying, constructing, and documenting webs of

relationships require a number of advanced features. Managing complex webs of

relationships requires that the right relationships are used at the level of detail.

Template
parameters

Implicit binding

Map<Customer, Order, 3)

<<bind>> (Customer, Order, 3)

Map

+ bind(in I : item; in v : Value) : Boolean
+ isBound(in I : item) : Boolean {isQuery}

Item
Value
Buckets : int

OrderMap Explicitly binding

Template class

45

 A relationship is a connection among things. In Object-oriented modeling the

four most important relationships are dependencies, generalizations, associations, and

realizations. Graphically, a relationship is rendered as a path, with different kinds of

lines used to distinguish the different relationships.

3.2.1 Dependency

 A dependency is a using relationship specifying that a change in one thing may

affect another thing. Graphically, a dependency is rendered as a dashed line, directed to

the thing that is depended on. There are eight stereotypes that apply to dependency

relationships among classes and objects.

1. bind Specifies that the source instantiates the target using the given actual

parameters

2. derive Specifies that the source may be computed from the target

3. friend Specifies that the source is given special visibility into the target

4. instanceof Specifies that the source object is an instance of the target classifier

5. instantiate Specifies that the source creates instances of the target

6. powertype Specifies that the target is a powertype of the source; a powertype is a

classifier whose objects are all the children of a given parent.

7. refine Specifies that the source is at a finer degree of abstraction than the target

8. use Specifies that the semantics of the source element depends on the

semantics of the public part of the target

 There are two stereotypes that apply to dependency relationships among

packages.

46

1. access Specifies that the source package is granted the right to reference the

elements of the target package

2. import A kind of access that specifies that the public contents of the target

package enter the flat namespace of the source, as if they had been

declared in the source

 Two other stereotypes apply to dependency relationships among use cases.

1. extend Specifies that the target use case extends the behavior of the source

2. include Specifies that the source use case explicitly incorporates the behavior of

another use case at a location specified by the source.

 Three stereotypes apply to dependency relationships among objects.

1. become Specifies that the target is the same object as the source but at a later point

in time and with possibly different values, states or roles.

2. call Specifies that the source operation invokes the target operation

3. copy Specifies that the target object is an exact, but independent, copy of the

source

 One Stereotype apply to dependency relationships among state machines

1. send Specifies that the source operation sends the target event

 Finally one stereotype apply to dependency relationships among subsystems

1. trace Specifies that the target is an historical ancestor of the source.

3.2.2 Generalization

 A generalization is a relationship between the super class or parent and the

subclass or child. The two types of inheritance which generalization support are single

47

inheritance and multiple inheritance. In UML there is one stereotype and four constraints

that are applicable to generalization relationships.

 First there is one stereotype

1. Implementation Specifies that the child inherits the implementation of the parent

but does not make public. Violates substitutability

 There are four standard constraints that apply to generalization relationships.

1. complete Specifies that all children have been specified in the model and no

children are permitted

2. incomplete Specifies that not all children have been specified in the model and

additional children are permitted

3. disjoint Specifies that objects of the parent may have not more than one of

the children

4. overlapping Specifies that objects of the parent may have more than one of the

children.

3.2.3 Association

 An association is a structural relationship, specifying that objects of one thing are

connected to objects of another. Apart from a name, role, multiplicity and aggregation,

advanced association relationship uses navigation, qualification, visibility and

composition.

48

Navigation

 Unless otherwise specified, navigation across an association is bi-directional.

Visibility

 Unless otherwise noted, the visibility of a role is public. All the three levels of

visibility which is available for class features can be used with the association

relationships�s visibility.

Qualification

 Qualifier is rendered as a small rectangle attached to the end of an association,

placing the attributes in the rectangle. The source object, together with the values of the

qualifier�s attributes, yield a target object or a set of objects.

*
1

owner

User Password

Association navigation

*
- key

1

+ owner

User Password

visibility

WorkDesk JobID : int ReturnedItem

qualifier

49

Composition

 Composition is really just a special kind of association and is specified by

adorning a plain association with a filled diamond at the whole end.

 The UML defines five constraints that may be applied to association relationships.

They include :

1. implicit Specifies that the relationship is not manifest, but rather conceptual

2. ordered Specifies that the set of objects at one end are in an explicit order

3. changeable links between objects may be added, removed and changed freely

4. addOnly new links may be added from an object

5. frozen a link once added, may not be modified or deleted.

3.2.4 Realization

 A realization is a semantic relationship between classifiers in which one classifier

specifies a contract that another classifier guarantees to carry out. When a class or a

component realizes an interface, it means that clients can rely on the class or component

to faithfully carryout the behavior specified by the interface. That means the class or

component implements all the operations of the interface, responds to all its signals, and

1

*

Window

Window

composition

whole

part

50

in all ways follows the protocol established by the interface for clients who use those

operations or send those signals.

Common Modeling Techniques � Modeling Webs of Relationships

 Modeling the vocabulary of a complex system requires a balanced distribution of

responsibilities in the system as a whole, with individual abstractions that are tightly

cohesive and with relationships that are expressive, yet loosely coupled. To model these

webs of relationships

Don�t begin in isolation. Apply use cases and scenarios to drive the discovery of

the relationships among a set of abstractions.

In general, start by modeling the structural relationships that are present. These

reflect the static view of the system and are therefore fairly tangible.

Next, identify opportunities for generalization/specialization relationships

Only after completing the preceeding steps, dependencies can be looked into

<<interface>>
RuleAgent

AddRule()
ChangeRule()
ExplainAction()

AccountBussinessRule

Realization of an Interface �
Cannonical Form

Realization of a Use Case

Validate
User Validation

51

For each kind of relationship, start with its basic form and apply advanced

features only if it is absolutely necessary

Remember that it is both undesirable and unnecessary to model all relationships

among a set of abstractions in a single diagram

3.3 INTERFACES, TYPES AND ROLES

 Interfaces are used to visualize, specify, construct and document the flow within

the system. Types and roles provide a mechanism to model the static and dynamic

conformance of an abstraction to an interface in a specific context. An interface is a

collection of operations that are used to specify a service of a class or a component.

 A type is a stereotype of a class used to specify a domain of objects, together with

the operations applicable to the object. A role is the behavior of an entity participating in

a particular context. Graphically, an interface is rendered as a circle; in its expanded

form, an interface may be rendered as a stereotyped class in order to expose its operations

and other properties.

Names :

 Every interface must have a name that distinguishes it from other interfaces. A

name is a textual string. The name alone is known as simple name. A path name is the

interface name prefixed by the name of the package in which that interface lives.

IUnknown

Simple Name

Networking : : IRouter

Path Name

52

Operations

 An interface is a named collection of operations used to specify a service of a

class or of a component. Unlike classes or types, interfaces do not specify any structure,

nor do they specify any implementation.

 Like a class, an interface may have any number of operations. These operations

may be adorned with visibility properties, concurrency properties, stereotypes, tagged

values and constraints. Signals can also be associated with an interface.

Relationships

 Like a class an interface may participate in generalization, association,

dependency and realization relationships.

<<interface>>
URLStreamHandler

OpenConnection()
ParseURL()
SetURL()
ToExternalForm()

Java::Util::observable

Tracker

id
currentPosition

setPosition()
setVelocity()
expectedPosition()

<<interface>>
Observer

update()

TargetTracker

53

 The above diagram shows the interface with its operations and a realization

relationship which is a cross between generalization and dependency.

Types and Roles

 Type is a stereotype of class, and is used to specify a domain of objects, together

with the operations applicable to the objects of that type. A role, names a behavior of an

entity participating in a particular context. In other words a role is the face that an

abstraction presents to the world.

 In the above diagram the class Person may have many instances depending upon

the context of it being used. Therefore here the role e of type employee is an instance of

Person. Most component systems, such COM+ and Enterprise Java Beans, provide for

component introspection, meaning that an interface can be queried programmatically to

determine its operation.

Modeling Static and Dynamic Types

 Modeling the static nature of an object can be visualized in a class diagram.

However, when modeling things like business objects, which naturally change their roles

throughout a workflow, it�s sometimes useful to explicitly model the dynamic nature of

that object�s type. In these circumstances, an object can gain and lose types during its

life. To model a dynamic type,

role

1..* *
e:employee Person Company

54

Specify the different possible types of that object by rendering each type as a class

stereotyped as type or as interface

Model all the roles the class of the object may take on at any point in time.

In an interaction diagram, properly render each instance of the dynamically typed

class. Display the role of the instance in brackets below the object�s name.

To show the change in role of an object, render the object once for each role it

plays in the interaction, and connect these objects with a message stereotyped as

become.

3.4 PACKAGES

 In the UML, the package is a general purpose mechanism for organizing

modeling elements into groups. The elements include classes, interfaces, components,

nodes, diagrams and other elements. Graphically, a package is rendered as a tabbed

folder.

Names

 Every package must have a name that distinguishes it from other packages. A

name is a textual string. That name alone is known as a simple name; a path name is the

package name prefixed by the name of the package in which that package lives, if any.

Business Rules

+ OrderForm
+ TrackingForm
- Order

Client

55

Owned Elements

 A package may own other elements, including classes, interfaces, components,

nodes, collaborations, use cases, and even other packages. Owning is a composite

relationship, which mean that the element is declared in the package. If the package is

destroyed, the element is destroyed. Every element is uniquely owned by exactly one

package.

Importing and Exporting

 Importing grants a one way permission for the elements in one package to access

the elements in another package. In the UML an import relationship is modeled as a

dependency adorned with the stereotype import. By packaging abstractions into

meaningful chunks and then controlling their access by importing, the complexity of

large number of abstractions are controlled. The public parts of a package are called its

exports.

 The parts that one package exports are visible only to the contents of those

packages that explicitly import the package.

Graphical Nesting

Textual Nesting

+ OrderForm
+ TrackingForm
- Order

Client + OrderForm

- Order

+ TrackingForm

Client

56

Generalization

 Generalization among packages is very much like generalization among classes.

Packages involved in generalization relationship follow the same principle of

substitutability as do classes. A specialized package can be used anywhere a more

general package is used.

exports

<<import>

<<import>

+ OrderForm
+ TrackingForm
- Order

Client

+ OrderRules
- GUI :: Window

Policies

+ Window
+ Form
EventHandler

GUI

+ Database
+ LoggingService

Server

exports

+ Window
+ Form
EventHandler

GUI

+ GUI :: Window
+ Form
GUI :: EventHandler

WindowsGUI

MacGUI

57

3.5 INSTANCES

 An instance is a concrete manifestation of an abstraction to which a set of

operations may be applied and which may have a state that stores the effects of the

operation. An Instance does not stand alone. They are almost always tied to an

abstraction. An abstraction denotes the ideal essence of a thing; an instance denotes a

concrete manifestation. The UML provides a graphical representation for instances. An

instance is rendered by underlying its name.

 Almost every building block in the UML, most notably classes, components,

nodes and use cases, may be modeled in terms of their essence or in terms of their

instances.

Names

 Every instance must have a name that distinguishes it from other instances with

its context. Typically, an object lives within the context of an operation, a component, or

a node. A name is a textual string, such as t and myCustomer that is shown in the

following figure.

t : Transaction myCustomer :Multimedia::AudioStream agent:

:keyCode

Named instances
anonymous instance

orphan
instance Multiobjcet

58

State of the Instance

 An object also has state, which in this sense encompasses all the (usually static)

properties of the object plus the current (usually dynamic) values of each of these

properties.

 For example, when making an airline reservation (represented by the object r :

Reservation), the value can be set for one of its attributes (for example, prince = 395.75).

If the reservation changes, perhaps by adding a new leg to the itinerary, then its state

might change (for example, price = 1024.86).

Active Objects

 Most often, active objects are used in the context of interaction diagrams that

model multiple flows of control. Each active object represents the root of a flow of

control and may be used to name distinct flows. The following figure shows an active

class.

Common Modeling Techniques -- Modeling Concrete Instances

To model concrete instances

Identify those instances necessary and sufficient to visualize, specify, construct,

or document the problem to be modeled.

Instance with explicit state

myCustomer

Id : SSN = �432�
Active = True

Instance with attribute values

c : Phone
[WaitingForAnswer]

r : FrameRenderThread

59

Render these objects in the UML as instances.

Expose the stereotype, tagged values, and attributes for each instance

Render these instances and their relationships in an object diagram appropriate to

the kind of the instance

Common Modeling Techniques -- Modeling Prototypical Instances

To model prototypical instances,

Identify those prototypical instances necessary and sufficient to visualize, specify,

construct, or document the problem

Render these object in the UML, as instances

Expose the properties of each instance necessary and sufficient to model the

problem

Render these instances and their relationships in an interaction diagram or an

activity diagram.

3.6 OBJECT DIAGRAMS

 An object diagram is a diagram that shows a set of objects and their relationships

at a point in time. Graphically, an object diagram is a collection of vertices and arcs. An

object diagram is a special kind of diagram and shares the same common properties as all

other diagrams � that is, a name and graphical contents that are a projection into a model.

What distinguishes an object diagram from all other kinds of diagrams is its particular

content.

60

 Object diagrams commonly contain objects and links. Like all other diagrams,

object diagrams may contain notes and constraints. Object diagrams may also contain

packages or subsystems, both of which are used to group elements into larger chunks.

Common Modeling Techniques -- Modeling object structures

 When object diagrams are used, meaningfully interesting sets of concrete or

prototypical objects are exposed. This is what it means to model an object structure � an

object diagram shows one set of objects in relation to one another at one moment in time.

To model an object structure

Identify the mechanism to model.

For each mechanism, identify the classes, interfaces, and other elements that

participate in this collaboration; identify the relationships among these things, as

well.

Consider one scenario that walks through this mechanism. Freeze that scenario at

a moment in time, and render each object that participates in the mechanism

Expose the state and attribute values of each such object, as necessary, to

understand the scenario

Similarly, expose the links among these objects, representing instances of

associations among them.

61

 The figure shows a set of objects drawn from the implementation of an

autonomous robot. This figure focuses on some of the objects involved in the mechanism

used by the robot to calculate a model of the world in which it moves. There are many

more objects involved in a running system, but this diagram focuses on only those

abstractions that are directly involved in creating this world view.

 To reverse engineer an object diagram,

Choose the target that is to be reverse engineered.

Using a tool or simply walking through a scenario, stop execution at a certain

moment in time.

Identify the set of interesting objects that collaborate in that context and render

them in an object diagram

As necessary to understand their semantics, identify the links that exist among

these objects.

<<global>>
unassigned

r : Robot
[moving]

w : World

w : World w : World

w1 : Wall
width = 36

w3 : Wall
width = 96

d8 : Door
width = 36

w2 : Wall
width = 96

: Element

62

LESSON - 4

BASIC BEHAVIORAL MODELING - INTRODUCTION

 In this lesson will learn about the links, roles, messages, actions, sequences,

modeling flows of control and creating well-structured algorithms. Also in this lesson we

will discuss about use cases, actors, include, extend, modeling the behavior of an element

and realizing use cases with collaborations. Among the diagrams in the UML, well learn

about usecase diagrams, interaction diagrams and activity diagrams.

4.1 INTERACTIONS

 In every interesting system, objects don�t just sit idle. Instead they interact with

one another by passing messages. An interaction is a behavior that comprises a set of

messages exchanged among a set of objects within a context to accomplish a purpose.

Well-structured interactions are like well-structured algorithms � efficient, simple,

adaptable, and understandable.

 An interaction is a behavior that comprises a set of messages exchanged among a

set of objects with a context to accomplish a purpose. A message is a specification of a

communication between objects that conveys information with the expectation that

activity will ensue. Graphically, a message is rendered as a directed line and almost

always includes the name of its operation.

63

Context

 An interaction may be found in the representation of a component, node or use

case, each of which, in the UML, is really a kind of classifier. In the context of a use

case, an interaction represents a scenario that, in turn, represents one thread through the

action of the use case.

Objects and Roles

 The objects that participate in an interaction are either concrete things or

prototypical things. As a concrete thing, an object represents something in the real world.

Links

 A link a semantic connection among objects. In general, a link is an instance of

an association. A link specifies a path along which one object can dispatch a message to

another object.

In the above figure, wherever a class has an association to another class, there

may be a link between the instances of the two classes; wherever there is a link between

two objects, one object can send a message to the other object.

 The five types of adornments which are attached to the end of the link are

1. association Specifies that the corresponding object is visible by association

2. self Specifies that the corresponding object is visible because it is the

dispatcher of the operation

Assign(development)
p : Person : Company

64

3. global Specifies that the corresponding object is visible because it is in an

enclosing scope

4. local Specifies that the corresponding object is visible because it is in a

local scope

5. parameter Specifies that the corresponding object is visible because it is a

parameter

Messages

 A message is the specification of a communication among objects that conveys

information. In the UML there are five basic kinds of actions.

1. Call Invokes an operation on an object; an object may send a message to itself,

resulting in the local invocation of an operation

2. Return Returns a value to the caller

3. Send Sends a signal to an object

4. Create Creates an object

5. Destroy Destroys an object; an object may commit suicide by destroying itself.

notify()

destroy

route

calculateRoute()
setItinerary(i)

<<create>>

c : Client p : PlanningAssistant

: TicketAgent

65

The UML provides a visual distinction among these kinds of messages as shown

in the above figure. The message setItinerary(i) is the Call message, the

calculateRoute() is the local invocation of the call message. The message route is the

return message and notify() is the send message.

Sequencing

 When an object passes a message to another object, the receiving object might in

turn send a message to another object, which might send a message to yet a different

object. This stream of messages forms a sequence.

 There are two types of sequences. The are Procedural sequence, which is

rendered using a filled solid arrowhead, and a Flat sequence, which is rendered using a

stick arrowhead, to model the non-procedural progression of control from step to step.

These two sequences are depicted in the following diagram.

2.1 : I = findAt(p)

2 : clickAt(p) 2.2 : putRecentPick(i)

 : View c : Controller : Cache

Procedural Sequence

1 : liftHandset() 2 : assertCall()

c : Caller : Telephone : Exchange

Flat Sequence

66

Creation, Modification and Destruction

 In some interactions, objects may be created and destroyed. The same is true of

links; the relationships among objects may come and go. To specify if an object or link

enters and/or leaves during an interaction, attach one of the following constraints to the

element.

1. new Specifies that the instance or link is created during execution of the

enclosing interaction

2. destroyed Specifies that the instance or link is destroyed prior to completion of

execution of the enclosing interaction

3. transient Specifies that the instance or link is created during execution of the

enclosing interaction but is destroyed before completion of execution.

 To model the flow of control using interactions,

Set the context for the interaction, whether it is the system as a whole, a class, or

an individual operation

Set the stage for the interaction by identifying which objects play a role

If the model emphasizes the structural organization of these objects, identify the

links that connect them.

In time order, specify the messages that pass from object to object.

Also to convey the necessary detail of this interaction, adorn each object at every

moment in time with its state and role.

67

4.2 USE CASES

 A use case specifies the behavior of a system or a part of a system and is a

description of a set of sequences of actions, including variants, that a system performs to

yield an observable result of value to an actor. Well structured use cases denote essential

system or subsystem behaviors only, and are neither overly general nor too specific.

Names

 Every use case must have a name that distinguishes it from other use cases. A

name is a textual string. That name alone is known as a �simple name�. A �path name�

is the use case name prefixed by the name of the package in which that use case lives.

Use Cases & Actors

 An actor represents a coherent set of roles that users of use cases play when

interacting with these uses cases. An instance of an actor represents an individual

interacting with the system in a specific way. Although Actors are used in models, they

are not actually part of the system.

 commercial
customer

Validate
User

Sensors ::
Calibrate location

Simple name Path name

customer

68

 As the above figure indicates, actors are rendered as stick figures. Actors can be

defined as general kinds (such as Customer) and specialize them (such as

CommercialCustomer) using generalization relationships. Actors may be connected to

use cases only by association. An association between an actor and a use case indicates

that the actor and the use communicate with one another, each one possibly sending and

receiving messages.

Use Cases and Collaborations

As the above figure shows, the realization of a use case can be specified explicitly by a

collaboration. Most of the time, though, a given use case is realized by exactly one

collaboration, so there is no need to model this relationship explicitly.

Organizing Use Cases

 Use cases can be organized by giving them in packages in the same manner in

which classes are organized. Use cases can also be organized by specifying

generalizations, include and extend relationships among them. Generalization among use

cases means that the child use case inherits the behavior and meaning of the parent use

case.

 To model the behavior of an element in the use cases, do the following

Place Order Order
Management

69

Identify the actors that interact with the element. Candidate actors include groups

that require certain behavior to perform their tasks or that are needed directly or

indirectly to perform the element�s functions.

Organize actors by identifying general and more specialized roles.

For each actor, consider the primary ways in which that actor interacts with the

element. Consider also interactions that change the state of the element or its

environment or that involve a response to some event.

Consider also the exceptional ways in which each actor interacts with the element

Organize these behaviors as use cases, applying include and extend relationships

to factor common behavior and distinguish exceptional behavior.

4.3 USE CASE DIAGRAMS

 A use case diagram is a diagram that shows a set of use cases and actors and

relationships such as dependency, generalization and association. Use case diagrams

may also contain packages which are used to group elements of the model into larger

groups.

Common Uses

 Use case diagrams are applied to model the static use case view of a system. This

view primarily supports the behavior of a system � the outwardly visible services that the

system provides in the context of its environment. When modeling the static use case

view of a system, use case diagrams are applied in one of two ways.

70

 1) To model the context of a system

The above diagram shows the context of a credit card validation system, with an

emphasis on the actors that surround the system. To construct a context of a system, do

the following :

Identify the actors that surround the system

Organize actors that are similar to one another in a generalization/specialization

hierarchy

Where it aids understandability, provide a stereotype for each such actor

Populate a use case diagram with these actors.

Perform Card
Transaction

Process
Customer Bill

Reconcile
Transaction

Manage
Customer
Account

Credit Card Validation System

customer

Individual
customer

Corporate
customer

Retail
Institution

Sponsoring
Financial
Institution

71

 2) To model the requirements of a system

Modeling the requirements of a system involves specifying what that systems should

do, independent of how that system should do it. Requirements can be expressed in

various forms, from unstructured text to expressions in a formal language, and everything

in between. Most, if not all of a system�s functional requirements can be expressed as

use cases, and the UML�s use case diagrams are essential for managing these

requirements. To model the requirements of a system, do the following :

Establish the context of the system by identifying the actors that surround it.

For each actor, reconsider the behavior that each expects or requires the system to

provide

Name these common behaviors as use cases.

Factor common behavior into new use cases that are used by others; factor variant

behavior into new use cases that extend more main line flows.

Model these use cases, actors, and their relationships in a use case diagram

Adorn these use cases with notes that assert nonfunctional requirements; attach

some of these to the whole system.

72

The above diagram elides the relationships among the actors and the use cases. It

adds additional use cases that are somewhat invisible to the average customer, yet are

essential behaviors of the system.

Forward and Reverse Engineering

To forward engineer a use case diagram

For each use case in the diagram, identify its flow of events and its exceptional

flow of events.

Depending on how deeply the test is chosen, generate a test script for each flow.

Customer

Retail
Institution

Sponsoring
financial

institution

Perform card
transaction

Process
customer bill

Reconcile
transaction

Manage
customer
account

Detect card
fraud

Report on
account balance

Manage
network outage

Credit Card Validation System

73

As necessary, generate test scaffolding to represent each actor that interacts with

the use case.

Use tools to run these tests each time the element is released to which the use case

diagram applies

To reverse engineer a use case diagram

Identify each actor that interacts with the system

Fro each actor, consider the manner in which the actor interacts with the system,

changes the state of the system or its environment, or responds to some event

Trace the flow of events in the executable system relative to each actor.

Cluster related flows by declaring a corresponding use case.

Render these actors and use cases in a use diagram, and establish their

relationships.

4.4 INTERACTION DIAGRAMS

 Sequence diagrams and collaboration diagrams � both of which are called

interaction diagrams -- are two of the five diagrams used in the UML for modeling the

dynamic aspects of systems. An interaction diagram shows an interaction, consisting of a

set of objects and their relationships, including the messages that may be dispatched

among them. Interaction diagrams are not only important for modeling the dynamic

aspects of a system, but also for constructing executable system through forward and

reverse engineering.

74

Contents

 Interaction diagrams commonly contain Objects, links and messages. What

distinguishes an interaction diagram from all other kinds of diagrams is its particular

context. Like all other diagrams, interaction diagrams may contain notes and constraints.

Sequence Diagrams

 A sequence diagram emphasizes the time ordering of messages. Sequence

diagrams have two features that distinguish them from collaboration diagrams. First,

there is the object lifeline. An object lifeline is the vertical dashed line that represents the

existence of an object over a period of time. Most objects that appear in an interaction

diagram will be in existence for the duration of the interaction, so these objects are all

aligned at the tope of the diagram, with their lifelines drawn from top to bottom of the

diagram.

 Second there is the focus of control. The focus of control is a tall, thin rectangle

that shows the period of time during which an object is performing an action, either

directly or through a subordinate procedure. The top of the rectangle is aligned with the

start of the action; the bottom is aligned with its completion.

Collaboration Diagrams

 A collaboration diagram emphasizes the organization of the objects that

participate in an interaction. Collaboration diagrams have two features that distinguish

them from sequence diagrams. First, there is the path. To indicate how one object is

75

linked to another, and paths are attached as stereotypes to the far end of a line (such as

<local>, indicating that the designated object is local to the sender).

 Second, there is the sequence number. To indicate the time order of a message,

the message is preceded with a number (starting with the message numbered 1),

increasing monotonically for each new message in the flow of control. To show nesting,

DEWEY decimal numbering (1 is the first message, 1.1 is the first message nested in

message 1) is used.

 When modeling the dynamic aspects of a system, typically interaction diagrams

are used in one of two ways. The include :

 1. To model flows of control by time ordering.

 Here sequence diagrams are used. Modeling a flow of control by time ordering

emphasizes the passing of messages as they unfold over time, which is a particularly

useful way to visualize dynamic behavior in the context of a use case scenario. To model

a flow of control by time ordering, do the following :

Set the context for the interaction, whether it is a system, subsystem, operation, or

class or one scenario of a use case or collaboration

Set the stage for the interaction by identifying which objects play a role in the

interaction

Set the lifeline for each object.

Starting with the message that initiates this interaction, lay out each subsequent

message from top to bottom between the lifelines, with each message�s properties

Adorn each object�s lifeline with its focus of control

76

Adorn each message with a timing mark and attach suitable time or space

constraints if time or space constraints are to be specified

Attach pre and postconditions to each message if flow of control is to be specified

more formally.

 The above figure shows a sequence diagram that specifies the flow of control

involved in initiating a simple, two-party phone call.

connect(s)

liftReceiver

ring()

connect(r,s)
connect(r)

<<create>>

routeCall(s,n)

{dialing,.executionTime<30 sec}

* dialDigit(d)
dialing

setDialTone()

liftReceiver

s : Caller : Switch r : Caller

c : Conversation

77

 2. To model flows of control by organization.

 Here collaboration diagrams are used. Modeling a flow of control by

organization emphasizes the structural relationships among the instances in the

interaction, along which messages may be used.

The above diagram shows a collaboration diagram that specifies the flow of control

involved in registering a new student at a school, with an emphasis on the structural

relationships among these objects. To model a flow of control by organization, do the

following :

Set the context for the interaction, whether it is a system, subsystem, operation, or

class, or one scenario of use case or collaboration

s : Student

registered = True

2 : addStudent(s)

{association}{association}

3.2 : add(s) 3.3 : add(s)

3.4 : <<become>>

1 : <<create>>
3 : register()

<<local>>

3.1 : getSchedule()

{self}
s : Student

registered = False

c1 : Course c2 : Course

r : RegistrarAgent : School

78

Set the stage for the interaction by identifying which objects play a role in the

interaction.

Set the initial properties of each of these objects.

Specify the links among these object along which message may pass

Starting with the message that initiates this interaction, attach each subsequent

message to the appropriate link, setting its sequence number, as appropriate.

Adorn each message with a timing mark and attach suitable time or space

constraints if time or space constraints are to be specified

Attach pre and postconditions to each message if flow of control is to be specified

more formally.

4.5 ACTIVITY DIAGRAMS

 Activity diagrams are one of the five diagrams in the UML for modeling the

dynamic aspects of systems. An activity diagram is essentially a flowchart showing flow

of control from activity to activity. Activity diagrams are not only important for

modeling the dynamic aspects of a system, but also for constructing executable systems

through forward and reverse engineering.

 An activity diagram shows the flow from activity to activity. An activity is an

ongoing nonatomic execution within a state machine. Activities ultimately result in some

action, which is made up of executable atomic computations that result in change in state

of the system or the return of a value. Actions encompass calling another operation,

sending a signal, creating or destroying an object, or some pure computation, such as

evaluating an expression. Graphically, an activity diagram is a collection of vertices and

79

arcs. Activity diagrams commonly contain (a) activity states and action states (b)

Transitions and (c) Objects.

Action States and Activity States

 The executable, atomic computations are called action states because they are

states of the system, each representing the execution of an action. In contrast, activity

states can be further decomposed, their activity being represented by other activity

diagrams. Furthermore, activity states are not atomic, meaning that they may be

interrupted and, in general, are considered to take some duration to complete.

As the above figure shows, the representation of the both the activity and action states are

done using lozenge shape (a symbol with horizontal top and bottom and convex sides).

Inside that shape, any expression can be written. Incidentally there is no notational

distinction between action and activity states, except that an activity state may have

additional parts, such as entry and exit actions.

entry action
Activity state

Expression
(action state)

Simple
action

Bid Plan index := lookup(e) + 7;

Process bill (b)
Do construction()

entry / setLock()

80

Transitions

 When the action or activity of a state completes, flow of control passes

immediately to the next action or activity state. This flow is specified by using

transitions to show the path from one action or activity to the next action or activity state.

In the UML, a transition is represented as a simple directed line, as shown in the

above figure.

Branching

 Simple, sequential transitions are common, but they are not the only kind of path

that is to be modeled. Therefore a branch is needed to show this. A branch may have

one incoming transition and two or more outgoing ones as shown in the following figure.

Branch is represented as a diamond.

Select site

Commission architect

start state

stop state

transition

[materials ready]

[materials not ready]

Release Work
Order

Assign tasks

Reschedule

81

Forking and Joining

 A fork represents the splitting of a single flow of control into two or more

concurrent flows of control. A fork may have one incoming transition and two or more

outgoing transitions, each of which represents an independent flow of control. A join

represents the synchronization of two or more concurrent flows of control A join may

have two or more incoming transitions and one outgoing transition.

Prepare for speech

Gesture()

Decompress

Synch mouth() Stream audio()

Cleanup

82

Swimlanes

 To partition the activity states on an activity diagram into groups, UML uses a

term called swimlanes. Visually, each group is divided from its neighbor by a vertical

solid line. Each swimlane has a name unique within its diagram. A swimlane really has

no deep semantics, except that it may represent some real-world entity. There�s a loose

connection between swimlanes and concurrent flows of control Conceptually, the

activities of each swimlane are generally � but not always � considered separate from the

activities of the neighboring swimlanes. This is depicted in the following diagram.

Request product

Process order

Pay bill

Pull materials

Close order

Receive order

Ship Order

Bill Customer

Customer Sales Warehouse

83

Activity diagrams are typically used in two ways when modeling the dynamic

aspects of a system.

 1. To model a workflow

 In this the focus is on activities as viewed by the actors that collaborate with the

system.

Request return

Get return number

Receive item

Credit account

Restock item

Ship Item

i : Item
[returned]

i : Item
[available]

Customer Telesales Accounting Warehouse

84

To model a workflow,

Establish a focus for the workflow/

Select the business objects that have the high-level responsibilities for parts of the

overall workflow.

Identify the preconditions of the workflow�s initial state and the post-conditions

of the workflow�s final state

Beginning at the workflow�s initial state, specify the activities and actions that

take place over time and render them in the activity diagram as either activity

states or action states.

For complicated actions, or for sets of actions that appear multiple times, collapse

these into activity states, and provide a separate activity diagram that expands on

each.

Render the transitions that connect these activity and action states.

If there are important objects that are involved in the workflow, render them in

the activity diagram, as well.

2. To model an operation

 In this activity diagrams are used as flowcharts, to model the details of a

computation. In this use of activity diagrams, the modeling of branch, fork, and join

states is particularly important. To model an operation do the following :

Collect the abstractions that are involved in this operation. This includes the

operation�s parameters, the attributes of the enclosing class, and certain

neighboring classes

85

Identify the preconditions at the operation�s initial state and the post-

conditions at the operation�s final state.

Beginning at the operation�s initial state, specify the activities and actions that

take place over time and render them in the activity diagram as either activity

states or actions states

Use branching as necessary to specify conditional paths and iteration

Only if this operation is owned by an active class, use forking and joining as

necessary to specify parallel flows of control.

The above diagram shows an activity diagram that specifies the algorithm of the

operation intersection, whose signature includes one parameter and one return value.

x = (l.delta � delta) / (slope � l.slope);

y = (slope * x) + delta;

return Point(x,y)

[slope = l.slope] return Point(0,0)

86

LESSON - 5

ADVANCED BEHAVIORAL MODELING -- INTRODUCTION

 In this lesson we will walk through signal events, call events, time events and

change events and modeling a family of signals. We will also learn how to model

exceptions and how we can handle events in active and passive objects. Regarding the

state machines we learn states, transitions, activities, modeling the lifetime of an object

and creating well-structured algorithms. Under the heading Processes and Threads, we

will look into active objects, processes and threads, modeling multiple flows of control,

modeling interprocess communication and building thread-safe abstractions. Under the

heading time and space, we will learn time, duration and location. Also we will discuss

how to model the distribution of objects, objects that migrate and deal with real time and

distributed systems. Finally under the topic Statechart Diagrams, we will see how to

model reactive objects and also the concept of forward and reverse engineering with

respect to statechart diagrams.

5.1 EVENTS AND SIGNALS

 In the real world, things happen. Not only do things happen, but lots of things

may happen at the same time, and at the most unexpected times. An event is the

specification of a significant occurrence that has a location in time and space. In the

context of state machines, an event is an occurrence of a stimulus that can trigger a state

transition. A signal is a kind of event that represents the specification of an

asynchronous stimulus communicated between instances.

87

Kinds of Events

 Events may be external or internal. External events are those that pass between

the system and its actors. For example, the pushing of a button and an interrupt from a

collision sensor are both examples of external events. Internal events are those that pass

among the objects that live inside the system. An overflow exception is an example of an

internal event.

 In the UML, there are four kinds of events that can be modeled. They include

signals, calls, the passing of time and change in state.

Signals

 A signal represents a named object that is dispatched (thrown) asynchronously by

one object and then received (caught) by another. Exceptions are supported by most

contemporary programming languages and are the most common kind of internal signal

that will be needed to model.

 A signal may be sent as the action of a state transition in a state machine or the

sending of a message in an interaction. The execution of an operation can also send

signals. When modeling a class or an interface, an important part of specifying the

behavior of that element is specifying that its operations can send. In the UML the

modeling of the relationship between an operation and the events that it can send by

using a dependency relationship, stereotyped as send.

<<send>>

MovementAgent

position
velocity

moveTo()

<<signal>>
Collision

force : Float

88

 In the UML, as shown from the above figure, signals can be modeled (and

exceptions) as stereotyped classes. A dependency can be used along with the stereotype

as send, to indicate that an operation sends a particular signal.

Call Events

 Just as a single event represents the occurrence of a signal, a call event represents

the dispatch of an operation. In both cases the event may trigger a state transition in a

state machine. A call event is an asynchronous event. This means that when an object

invokes an operation on another object that has a state machine, control passes from the

sender to the receiver, the transition is triggered by the event, the operation is completed,

the receiver transitions to a new state, and control returns to the sender.

 The above figure shows modeling a call event is indistinguishable from modeling

a signal event. In both cases, the event is shown, along with its parameters, as the trigger

for a state transition.

Time and Change Events

 A time event is an event that represents the passage of time. A change event is an

event that represents a change in state or the satisfaction of some condition.

startAutoPilot(normal)
Manual Automate

89

 In the above figure, a time event is modeled by using the keyword after followed

by some expression that evaluates to a period of time. Such expressions can be simple

(for example, after 2 seconds) or complex (for example after 1 ms since exiting idle).

Unless specified explicitly, the starting time of such an expression is the time since

entering the current state.

 In the above figure, also a change event is modeled by using the keyword when

followed by some Boolean expression. Such expressions are sued to mark an absolute

time (such as when time = 11 : 59 pm) or for the continuous test of an expression (for

example, when altitude < 1000).

Sending and Receiving Events

 Singal events and call events involve at least two objects : the object that sends

the signal or invokes the operation, and the object to which the event is directed. Because

signals are asynchronous, and because asynchronous calls are themselves signals, the

semantics of events interact with the semantics of active objects and passive objects.

After(2 seconds) / dropConnection()

when(11 : 49 pm) / selfTest()

Idle

Active

90

 Any instance of any class can send a signal to or invoke an operation of a

receiving object. When an object sends a signal, the sender dispatches the signal and

then continues along its flow of control, not waiting for any return from the receiver.

 In the UML, call events that an object may receive is modeled as operations on

the class of the object. In the UML, the named signals that an object may receive is

modeled by naming them in an extra compartment of the class. This is shown in the

following figure.

 In most event-driven systems, signal events are hierarchical. By modeling

hierarchies of signals in this manner, polymorphic events can be specified. To model a

family of signals,

$ Consider all the different kinds of signals to which a given set of active objects

may respond.

$ Look for the common kinds of signals and place them in a generalization /

specialization hierarchy using inheritance. Elevate more general ones and lower

more specialized ones.

KeypadManager

Signals
pushButton(b : Button)
powerUp()
powerDown()

91

$ Look for the opportunity for polymorphism in the state machines of these active

objects. Where polymorphism is found, adjust the hierarchy as necessary by

introducing intermediate abstract signals.

 An important part of visualizing, specifying and documenting the behavior of a

class or an interface is specifying the exceptions that its operations can raise. In the

UML, exceptions are kinds of signals, which can be modeled as stereotyped classes.

Exceptions may be attached to specific operations. Modeling exceptions is somewhat the

inverse of modeling a general family of signals. To model exceptions,

$ For each class and interface, and for each operation of such elements, consider the

exceptional conditions that may be raised

$ Arrange these exceptions in a hierarchy, elevate general ones, lower specialized

ones, and introduce intermediate exceptions, as necessary

<<signal>>
RangingFault

<<signal>>
VisionFault

<<signal>>
MovementFault

<<signal>>
BatteryFault

<<signal>>
MotorStall

<<signal>>
RobotSignal

<<signal>>
H/wFault

<<signal>>
Collision

sensor : Integer

Modeling Families of Signals

92

$ For each operation, specify the exceptions that it may raise.

5.2 STATE MACHINES

 A state machine is a behavior that specifies the sequences of states an objects goes

through during its lifetime in response to events, together with its responses to those

events. Well-structured state machines are like well-structured algorithms. They are

efficient, simple, adaptable and understandable.

 State machines are used to model the behavior of any modeling element,

although, most commonly, that will be a class, a use case or an entire system. State

machines may be visualized in two ways. First, using activity diagrams one can focus on

the activities that take place within the object. Second, using statechart diagrams, one

can focus on the event-ordered behavior of an object, which is especially useful in

modeling reactive systems.

<<exception>>
Exception

SetHandler()
FirstHandler()
LastHandler()

<<esception>>
Duplicate <<esception>>

Overflow
<<esception>>

Underflow Set

add()
remove()

item

Modeling Exceptions

93

States

 A state is a condition or situation during the life of an object during which is

satisfies some condition, performs some activity or waits for some event. An object

remains in a state for a finite amount of time. When an object�s state machine is in a

given state, the object is said to be in that state. For example, an instance of Heater

might be idle or perhaps ShuttingDown.

 A state has several parts. They include :

 1. Name A textual string that distinguishes the state from other

states, a state may be anonymous, meaning that it has no

name.

 2. Entry/exit actions Actions executed on entering and exiting the state,

respectively.

 3. Internal transition Transitions that are handled without causing a change in

state

 4. Substates The nested structure of a state, involving disjoint

(sequentially active) or concurrent (concurrently active)

substates

 5. Deferred events A list of events that are not handled in that state but rather,

are postponed and queued for handling by the object in

another state.

 Idle Running
keyPress

finished

94

 The above figure shows how to represent a state as a rectangle with rounded

corners. There are two special states that may be defined for an object�s state machine.

First, there�s the initial state, which indicates the default starting place for the state

machine or substate. An initial state is represented as a filled black circle. Second

there�s the final state, which indicates that the execution of the state machine or the

enclosing state has been completed. A final state is represented as a filled black circle

surrounded by an unfilled circle.

Transitions

 A transition is a relationship between two states indicating that an object in the

first state will perform certain actions and enter the second state when a specified event

occurs and specified conditions are satisfied. On such a change of state, the transition is

said to fire. Until the transition fires, the object is said to be in the source state; after it

fires, it is said to be in the target state. A transition has five parts. They include :

 1. Source state The state affected by the transition; if an object is in the

source state, an outgoing transition may fire when the

object receives the trigger event of the transition and if the

guard condition, if any, is satisfied.

 2. Event trigger The event whose reception by the object in the source state

makes the transition eligible to fire, providing its guard

condition is satisfied

 3. Guard condition A Boolean expression that is evaluated when the transition

is triggered by the reception of the event trigger; if the

95

expression evaluates true, the transition is eligible to fire; if

the expression evaluates false, the transition does not fire

and if there is no other transition that could be triggered by

that same event is lost.

 4. Action An executable atomic computation that may directly act on

the object that owns the statemachine, and indirectly on

other objects that are visible to the object

 5. Target state The state that is active after the completion of the transition

 As the above figure shows, a transition is rendered as a solid directed line from

the source to the target state. A self-transition is a transition whose source and target

states are the same.

 An event is the specification of a significant occurrence that has a location in time

and space. In the contest of a state machine, an event is an occurrence of a stimulus that

can trigger a state transition. A guard condition is evaluated just once for each transition

at the time the event occurs, but it may be evaluated again if the transition is retriggered.

contact

targetAt(p) [isThreat] /
t.addTarget(p)

noise

after(2 sec) / send c.isAlive

Idle Searching Engaging

Tracking Engaging

96

 An action is an executable atomic computation. Actions may include operation

calls (to the object that owns the state machine, as well as to other visible objects), the

creation or destruction of another object, or the sending of a signal to an object.

Advanced States and Transitions

 A wide variety of behavior can be modeled using only the basic features of states

and transitions in the UML. Using these features, one will end up with flat state

machines, which means that the behavioral models will consist of nothing more that arcs

(transitions) and vertices (states).

 However the UML�s state machines have a number of advanced features that help

to manage complex behavioral models. These features often reduce the number of states

and transitions needed and they codify a number of common and somewhat compels

idioms otherwise encountered using flat state machines.

Entry and Exit Actions

 Entry and exit actions may not have arguments or guard conditions. However, the

entry action at the top level of a state machine for a class may have parameters that

represent the arguments that the machine receives when the object is created. The UML

provides a shorthand for Entry and Exit actions. In the symbol for the state, an entry can

be included (marked by the keyword event entry) and an exit action (marked by the

keyword event exit), together with an appropriate action.

97

Internal Transitions

 Once inside a state, events are encountered and they are to be handled without

leaving the state. These are called internal transitions, and they are subtly different from

self-transitions. In a self-transition, such as an event triggers the transition, leaving the

state, an action is dispatched, and then the same state is reentered. Internal transitions

may have events with parameters and guard conditions. As such, internal transitions are

essentially interrupts.

Activities

 When an object is in a state, it generally sits idle, waiting for an event to occur.

Sometimes, however, an ongoing activity may be modeled. While in a state, the object

does some work that will continue until it is interrupted by an event. Actions are never

interruptible, but sequences of actions are.

entry action

exit action

internal transition

activity

deferred event

Tracking

entry / setMode(onTrack)

exit / setModel(offTrack)

newTarget / tracker.acquire()

do / followTarget

selfTest / defer

98

Deferred Events

 A deferred event is specified by listing the event with the special action defer. In

the above diagram, selfTest events may happen while in the tracking state, but they are

held until the object is in the Engaging state, at which time it appears as if they just

occurred. The implementation of deferred events requires the presence of an internal

queue of events. If an event happens but is listed as deferred, it is queued. Events are

taken off this queue as soon as the object enters a state that does not defer these events.

Substates

 The advanced features of states and transitions solve a number of common state

machine modeling problems. However, there is one more feature of the UML�s state

machines � substates � that does even more to help simplify the modeling of complex

behaviors. A substate is a state that is nested inside another one.

Sequential substates

 Substates such as validating and processing are called sequential, or disjoint

substates. Given a set of disjoint substates in the context of an enclosing composite state,

the object is said to be in the composite state and in only one of those substates (or the

final state) at a time. Therefore, sequential substates partition the state space of the

composite state into disjoint states.

99

A nested sequential state machine may have at most one initial state and one final

state.

History State

 A state machine describes the dynamic aspects of an object whose current

behavior depends on its past. A state machine in effect specifies the legal ordering of

states an object may go through during its lifetime. In the UML, a simple way to model

this idiom is by suing history states. A history state allows a composite state that

contains sequential substates to remember the last substate that was active in it prior to

the transition from the composite state.

Command

CleaningUp

Copying

Collecting

H

backingUp

maintain
cancel

Card Inserted
Idle

Maintenance

Validating

Selecting

Processing

Printing
[not continue]

continue

Active

entry / readCard
exit / ejectCard

100

 As the above figure shows, a shallow history state can be represented as a small

circle containing the symbol H.

Concurrent Substates

 Sequential substates are the most common kind of nested state machine often

encountered. In certain modeling situations however, it is necessary to specify

concurrent substates. These substates lets us to specify two or more state machines that

execute in parallel in the context of the enclosing object.

Modeling the Lifetime of an Object

 The most common purpose for which state machines is used is to model the

lifetime of an object, especially instances of classes, use cases, and the system as a whole.

Whereas interactions model the behavior of a society of objects working together, a state

[not continue]

[continue]

keyPress

Maintenance

Testing

Waiting Command

Testing
Devices

Self
diagnosis

Commanding

Idle

101

machine models the behavior of a single object over its lifetime, such user interfaces,

controllers and devices. To model the life time of an object,

! Set the context for the state machine, whether it is a class, a use case, or the

system as a whole

! Establish the initial and final states for the object. To guide the rest of the mode,

possibly state the pre and post conditions of the initial and final states,

respectively.

! Decide on the events to which this object may respond. If already specified, find

these in the object�s interfaces; if not already specified, then consider which

objects may interact with the object in the context, and then which objects may

possibly dispatch.

alarm(s)

attention

attention
clear

after (10 secs) / selfTest

Initializing

Idle

Command

Checking

Waiting Calling

Entry /
callCentre(s)entry / set Alarm

exit / clearAlarm

Active

Modeling the Lifetime of an Object

102

 The above figure shows the statemachine for the controller in a Home Security

System, which is responsible for monitoring various sensors around the perimeter of the

house. Notice that there is no final state. That, too, is common in embedded systems,

which are intended to run continuously.

5.3 PROCESSES AND THREADS

 A process is a heavyweight flow that can execute concurrently with other

processes; a thread is a lightweight flow that can execute concurrently with other threads

within the same process.

 In the UML, each independent flow of control is modeled as an active object. An

active object is a process or thread that can initiate control activity. As for every kind of

object, an active object is an instance of a class. In this case, an active object is an

instance of an active class. Also as for every kind of object, although here, message

passing must be extended with certain concurrency semantics, that helps to synchronize

the interactions among independent flows.

 A active object is an object that owns a process or thread and can initiate control

activity. An active class is a class whose instances are active objects. A process is a

heavyweight flow that can execute concurrently with other processes. A thread is a

lightweight flow that can execute concurrently with other threads within the same

process.

103

Flow of Control

 In a purely sequential system, there is one flow of control. This means that one

thing, and one thing only, can take place at a time. When a sequential program starts,

control is rooted at the beginning of the program and operations are dispatched one after

another. Even if there are concurrent things happening among the actors outside the

system, a sequential program will process only one event at a time, queuing or discarding

any concurrent external events. This process is called Flow of Control.

 Concurrency can be achieved in one of three ways : first, by distributing active

objects across multiple nodes; second, by placing active objects on nodes with multiple

processors; and third, by a combination of both methods.

Classes and Events

 Active classes are just classes, albeit ones with a very special property. An active

class represents an independent flow of control, whereas a plain class embodies no such

flow. In contrast to active classes, plain classes are implicitly called passive because they

cannot independently initiate control activity.

 Active classes share the same properties as all other classes. Active classes may

have instances. Active classes may have attributes and operations. Active classes may

participate in dependency, generalization, and association (including aggregation)

relationships. Active classes may use any of the UML�s extensibility mechanisms,

including stereotypes, tagged values, and constraints. Active classes may be the

realization of interfaces. Active classes may be realized by collaborations, and the

behavior of an active class may be specified by using state machines.

104

 All of the UML�s extensibility mechanisms apply to active classes. Most often,

tagged values are used to extend active class properties, such as specifying the scheduling

policy of the active class.

 The UML defines two standard stereotypes that apply to active classes.

 1. Process Specifies a heavyweight flow that can execute concurrently with

other processes

 2. Thread Specifies a lightweight flow that can execute concurrently with

other threads within the same process.

 The distinction between a process and a thread arises from the two different ways

of flow of control that may be managed by the operating system of the node on which the

object resides.

Communication

 When objects collaborate with one another, they interact by passing messages

from one to the other. In a system with both active and passive objects, there are four

possible combinations of interaction that must be considered.

 First, a message may be passed from one passive object to another. Assuming

there is only one flow of control passing through these objects at a time, such an

interaction is nothing more that the simple invocation of an operation.

 Second, a message may be passed from one active object to another. When that

happens, there is interprocess communication, and there are two possible styles of

communication. First, one active object might synchronously call an operation of

105

another. That kind of communication has rendezvous semantics, which means that the

caller calls the operation; the caller waits for the receiver to accept the call; the operation

is invoked; a return object(if any) is passed back to the caller; and then the two continue

on their independent paths. For the duration of the call, the two flows of controls are in

lock step. Second, one active object might asynchronously send a signal or call an

operation of another object. That kind of communication has mailbox semantics, which

means that the caller sends the signal or calls the operation and then continues on its

independent way. In the meantime, the receiver accepts the signal or call whenever it is

ready (with intervening events or calls queued) and continues on its way after it is done.

In the UML, a synchronous message is rendered as a full arrow and an

asynchronous message as a half arrow as shown in the above figure.

 Third, a message may be passed from an active object to a passive object. A

difficulty arises if more than one active object at a time passes their flow of control

through one passive object. In that situation, synchronization of these two flows are very

carefully modeled.

b : blackBoard

c : blackboardController

 : knowledgeSource
c2 : startSearch()
c3 : k.evaluate()

c1 : initialize()

2 : placePartialSolution()

1 : hasAHint(k)

106

 Fourth, a message may be passed from a passive object an active one. At first

glance, this may seem illegal, but it may be recalled that every flow of control is rooted in

some active object, it may be understood that a passive object passing a message to an

active object has the same semantics as a active object passing a message to an active

object.

Synchronization

 Anything more than one flow will interfere with another, corrupting the state of

the object. This is the classical problem of mutual exclusion. A failure to deal with it

properly yields all sorts of race conditions and interference that cause concurrent systems

to fail in mysterious and unrepeatable ways. The key to solving this problem in object-

oriented systems is by treating an object as a critical region. There are three alternatives

to this approach. Each of which involves attaching certain synchronization properties to

the operations defined in a class. In the UML all the three approaches can be modeled.

 1. sequential Callers must coordinate outside the object so that only one flow is

in the object at a time. In the presence of multiple flows of control

the semantics and integrity of the object cannot be guaranteed.

 2. Guarded The semantics and integrity of the object is guaranteed in the

presence of multiple flows of control by sequential zing all calls to

all the object�s guarded operations. In effect, exactly one operation

at a time can invoked on the object, reducing this to sequential

semantics.

 3. Concurrent The semantics and integrity of the object is guaranteed in the

107

presence of multiple flows of control by treating the operation as

atomic.

 Some of the programming languages support these constructs directly. Java, for

example has the synchronized property, which is equivalent to the UML�s concurrent

property.

 It is possible to model variations of these synchronization primitives by using

constraints. For example, the concurrent property can be modified by allowing multiple

simultaneous readers but only a single writer.

 Building a system that encompasses multiple flows of control is hard. In the

UML it can be done by applying class diagrams (to capture their static semantics) and

interaction diagrams (to capture their dynamic semantics) containing active classes and

objects. To model the flows of control using processes and threads,

! Identify the opportunities for concurrent action

! Consider a balanced distribution of responsibilities among these active classes

! Capture these static decisions in class diagrams

! Consider how each group of classes collaborates with one another dynamically

! Pay close attention to communication among active objects

! Pay close attention to asynchronization among these active objects.

Buffer

size : Integer

add() {concurrent}
remove() {concurrent}

108

 Interaction diagrams such as the above are useful in helping to visualize where

two flows of control might cross paths and, therefore, where particular attention should

be paid to the problems of communication and synchronization. Tools are permitted to

offer even more distinct visual cues, such as by coloring each flow in a distinct way.

 As part of incorporating multiple flows of control in the system, there must be a

consideration to the mechanisms by which objects that live in separate flows

communicate with one another. The problem of interprocess communication is

compounded by the fact that, in distributed systems, processes may live on separate

nodes. Classically, there are two approaches to interprocess communication : message

passing and remote procedure calls. In the UML, this can still be modeled as

asynchronous or synchronous events, respectively. But because these are no longer

simple in process calls, an adornment is needed to design with further information. To

model interprocess communication,

t : TradingManager

i1 : postValue()

i2 : postValue()

m1 : postAlert()

C1 : postBreakingStroy()

s2 : postValue()

s1 : postValue()

s : StockTicker a1 : Analyst s : CNNNewsFeed

m : AlertManager

a2 : Analyst i : IndexWatcher

109

! Model the multiple flows of control

! Consider which of these active objects represent processes and which represent

threads. Distinguish them using the appropriate stereotype.

! Model messaging using asynchronous communication; model remote procedure

calls using synchronous communication

! Informally specify the underlying mechanism for communication by using notes,

or more formally by using collaborations.

 The above figure shows a distributed reservation system with processes spread

across four nodes. Modeling with a note, communication is described as building on a

Java Beans messaging Service.

Client r3 : postResults()

<<process>>
h : HotelAgent

{location = hotel server}

<<process>>
t : TripPlanner
{location = client}

t1 : planTrip()
r1 : make()

r1 : make()

CORBA ORB

<<process>>
r : ReservationAgent

{location = reservation server}

<<process>>
t : TicketingManager

{location = airline server}

Communicates
across Beans
messaging services

110

5.4 TIME AND SPCE

 The real world is a harsh and unforgiving place. Events may happen at

unpredictable times, yet demand a specific response at a specific time. A system�s

resources may have to be distributed around the world � some of those resources might

even move about � raising issues of latency, synchronization, security, and quality of

service.

 Modeling time and space is an essential element of any real time and / or

distributed system. UML�s number of features are used, including timing marks, time

expressions, constraints and tagged values, to visualize, specify, construct and document

these systems. Dealing with real time and distributed systems is hard. Good models

reveal the necessary and sufficient properties of a system�s time and space characteristics.

Time

 Real time systems are, by their very name, time-critical systems. Events may

happen at regular or irregular times, the response to an event must happen at predictable

absolute times or at predictable times relative to the event itself.

 Especially for complex systems, it is a good idea to write expressions with named

constants instead of writing explicit times. These can be defined by those constants in

one part of the model and then refer to those constants in multiple places. In that way, it

is easier to update the model if the timing requirements of the system change.

111

Location

 Distributed systems, by their nature, encompass components that are physically

scattered among the nodes of a system. For many systems, components are fixed in place

at the time they are loaded on the system; in other systems, components may migrate

from node to node.

 As the above figure illustrates, the location of an element can be modeled in two

ways in the UML. First, as shown for the KioskServer, physically nest the element

t1 : remove() {every 1 ms}

c3 : add(k)

c1 : testKey() {every 1 ms}

c2 : testKey()

{executionTime < 10 ns}

Timing Constraint

c : MIDIController : keyCollection

k : key

b : MIDIEventBuffer t : MIDITransmitter

Time

<<processor>>
KioskServer

Deploys

vision.exe
log.exe
selfTest.exe

: LoadAgent
{location = Router}

Location by nesting

Location tagged value

112

(textually or graphically) in a extra compartment in its enclosing node. Second, as shown

for the LoadAgent, use the defined tagged value location to designate the node on which

the class instance resides.

Modeling Timing Constraints

 Modeling the absolute time of an event, modeling the relative time between

events, and modeling the time it takes to carry out an action are the three primary time-

critical properties of real time systems for which the timing constraints are used. To

model timing constraints,

! For each event in an interaction, consider whether it must start at some absolute

time. Model that real time property as a timing constraint.

! For each interesting sequence of messages in an interaction, consider whether

there is an associated maximum relative time for that sequence. Model that real

time property as a timing constraint on the sequence.

! For each time critical operation in each class, consider its time complexity.

Model those semantics as timing constraints on the operation.

{b.executionTime < 100 ns}

b : getImage()
a : refresh()

s : SystemAgent p : ServerPage c : Camera

{getImage.executionTime is
proportional to image size}

Modeling Timing Constraint

113

 The above diagram, which models the timing constraint shows the left-most

constraint specifies the repeating start time the call event refresh. Similarly, the centre

timing constraint specifies the maximum duration for calls to getImage. Finally the right-

most constraint specifies the time complexity of the call event getImage.

Modeling the Distribution of Objects

 Deciding how to distribute the objects in a system is a wicked problem, and not

just because the problems of distributions interact with the problems of concurrency.

Naïve solutions tend to yield profoundly poor performance, and over engineering

solutions aren�t much better. In fact, they are probably worse because they usually end

up being brittle. To model the distribution of objects,

! For each interesting class of objects in the system, consider its locality of

reference.

! Next consider patterns of interaction among related sets of objects. Co-locate sets

of objects that have high degrees of interaction, to reduce the cost of

communication.

! Next consider the distribution of responsibilities across the system.

! Consider also issues of security, volatility, and quality of service, and redistribute

objects as appropriate.

! Render this allocation in one of two ways:

1. By nesting objects in the nodes of a deployment diagram

2. By explicitly indicating the location of the object as a tagged value.

114

5.5 STATECHART DIAGRAMS

 Statechart diagrams are one of the five diagrams in the UML for modeling the

dynamic aspects of systems. A statechart diagram shows a state machine. An activity

diagram is a special case of a statechart diagram in which all or most of the states are

activity states and all or most of the transitions are triggered by completion of activities in

the source state. Thus, both activity and statechart diagrams are useful in modeling the

lifetime of an object. However, whereas an activity diagrams shows flow of control from

activity to activity,. A statechart diagrams shows flow of control from state to state.

 Statechart diagrams are not only important for modeling the dynamic aspects of a

system, but also for constructing executable systems through forward and reverse

engineering.

 A statechart diagram shows a state machine, emphasizing the flow of control from

state to state. A state machine is a behavior that specifies the sequences of states on

object goes through during its lifetime in response to events, together with its responses

to those events. A state is a condition or situation in the life of an object during which it

satisfies some condition, performs some activity, or waits for some event.

o : Order
{location = Workstation}

s : Sales
{location = Workstation}

a : ObserverAgent
{location = Server}

p : Product
{location = Server}

p : ProductTable
{location = DataWorkstation}

Modeling the Distribution of Objects

115

 An event is the specification of a significant occurrence that has a location in time

and space. In the context of state machines, an event is an occurrence of a stimulus that

can trigger a state transition. A transition is a relationship between two states indicating

that an object in the first state will perform certain actions and enter the second state

when a specified event occurs and specified conditions are satisfied. An activity is an

ongoing non-atomic execution within a state machine. An action is an executable atomic

computation that results in a change in a state of the model or the return of a value.

Graphically a statechart diagram is a collection of vertices and arcs.

 Statechart diagrams commonly contain Simple states and composite states and

transitions, including events and actions. Like all other diagrams, statechart diagrams

may contain notes and constraints.

Modeling Reactive Objects

 The most common purpose for which statechart diagrams are used is to model the

behavior of reactive objects, especially instances of classes, use cases, and the system as

a whole. Whereas interactions model the behavior of a society of objects working

together, a statechart diagram models the behavior of a single object over its lifetime.

Whereas an activity diagram models the flow of control from activity to activity, a

statechart diagram models the flow of control from event to event. To model reactive

objects using statechart diagram,

116

! Choose the context for the state machine, whether it is a class, a use case or the

system as a whole

! Choose the initial and final states for the object. To guide the rest of the node,

possibly state and pre and post conditions of the initial and final states,

respectively.

! Attach actions to these transitions and / or to these states.

! Consider ways to simplify machine by using substates, branches, forks, joins and

history states.

! Check that all states are reachable under some combination of events.

! Check that no state is a dead end from which no combination of event will

transition the object out of that state.

! Trace through the state machine, either manually or by using tools, to check it

against expected sequences of events and their responses.

put(c) [c /= �>�] /
token.append(c); return false

Put© [c /= �<�] /
return false

put(c) [c /= �;�] /
body.append(c); return false

put(c) [c == �;�] / return false

Put(c) [c == �>�]

Put(c) [c == �<�]

Waiting

GettingToken

GettingBody

117

LESSON � 6

ARCHITECTURAL MODELING -- INTRODUCTION

 In this chapter we will learn about components, interfaces, realization. We will

model executables and libraries, model tables, files and documents, model an API and

model source codes. Under the topic of Deployment we will learn about nodes and

connections as well as how to model processors and devices, and also to model the

distribution of components. Under the topic Collaborations, we will learn about

collaborations, realizations and interactions. We will also learn about modeling the

realization of a use case, modeling the realization of an operation and modeling a

mechanism. Under Patterns and Frameworks, we will learn about patterns and

frameworks and to model design patterns and to model architectural patterns. Under the

topic Component diagrams we learn how to model source code, executable releases,

physical databases and adaptable systems. Under Deployment diagrams, we model

embedded system, client/server system and a fully distributed system. Finally under

Systems and Models, we learn about systems, subsystems, models and views and will

learn how to model architecture of a system and to model systems of systems.

6.1 COMPONENTS

 Components live in the material world of bits and therefore are an important

building block in modeling the physical aspects of a system. A component is a physical

and replaceable part of a system that conforms to and provides the realization of a set of

interfaces. Components are used to model the physical things that may reside on a node,

such as executables, libraries, tables, files and documents.

118

 A component typically represents the physical packaging of otherwise logical

elements, such as classes, interfaces, and collaborations. Graphically, a component is

rendered as a rectangle with tabs.

Components and Classes

 In many ways, components are like classes; both have names; both may realize a

set of interfaces; both may participate in dependency, generalization and association

relationships; both may be nested; both may have instances; both may be participants in

interactions. However there are some significant differences between components and

classes.

o Classes represent logical abstractions; components represent physical things that

live in the world of bits. In short, components may live on nodes, classes may

not.

o Components represent the physical packaging of otherwise logical components

and are at a different level of abstraction

o Classes may have attributes and operations directly. In general, components only

have operations that are reachable only through their interfaces.

Components and Interfaces

 An interface is a collection of operations that are used to specify a service of a

class or a component. The relationship between component and interface is important.

All the most common component-based operating system facilities use interfaces as the

glue that binds components together.

119

Binary Replaceability

 The basic intent of every component-based operating system facility is to permit

the assembly of systems from binary replaceable parts. This means that system can be

created out of components and then evolve the system by adding new components and

replacing old ones, without rebuilding the system. A component is a physical and

replaceable part of a system that conforms to and provides the realization of a set of

interfaces.

 First, a component is physical. It lives in the world of bits, not concepts.

 Second, a component is replaceable. A component is substitutable

 Third a component is part of a system. A component rarely stands alone

 Fourth a component conforms to and provides the realization of a set of

interfaces.

Kinds of Components

 Components can be distinguished by three kinds. They include

 First, there are deployment components. These are the components necessary and

sufficient to form an executable system, such as dynamic libraries (DLLs) and

executables (EXEs)

 Second, there are work product components. These components are essentially

the residue of the development process, consisting of things such as source code files and

data files from which deployment components are created

120

 Third, there are execution components. These components are created as a

consequence of an executing system, such as a COM+ object, which is instantiated from

a DLL.

Standard Elements

 All the UML�s extensibility mechanisms apply to components. Most often,

tagged values are used to extend component properties (such as specifying the version of

a development component) and stereotypes to specify new kinds of components (such as

operating system-specific components). The UML defines five standard stereotypes that

apply to components.

 executable Specifies a component that may be executed on a node

 library Specifies a static or dynamic object library

 table Specifies a component that represents a database table

 file Specifies a component that represents a document containing

source code or data

 document Specifies a component that represents a document

Modeling Executables and Libraries

 The most common purpose for which components are used is to model the

deployment components that make the implementation. For trivial systems which has

only one executable, there is no need for component modeling. But for system which is

made up of several executables and associated object libraries, doing component

121

modeling will help to visualize, specify, construct and document the decisions about the

physical system. To model executables and libraries,

o Identify the partitioning of the physical system.

o Model any executables and libraries as components, using the appropriate

standard elements.

o If it�s important to manage the seams in the system, model the significant

interfaces that some components use and others realize.

o As necessary to communicate the intent, model the relationships among these

executables, libraries and interfaces.

 The above diagrams shows a set of components drawn from a personal

productivity tool that runs on a single personal computer. This diagram includes one

executable and four libraries, all of which use the UML�s standard elements for

dlog.dll

Animator.exe
{version = 5.01}

wrfrme.dll

render.dll

raytrce.dll

122

executables and libraries, respectively. This diagram also presents the dependencies

among these components.

Modeling Tables, Files and Documents

 If the implementation include data files, help documents, scripts, log files,

initialization files and installation/removal files, modeling these components is an

important part of controlling the configuration of the system. To model tables, files and

documents,

o Identify the ancillary components that are part of the physical implementation of

the system

o Model these things as components

o As necessary to communicate, model the relationships as well.

dlog.dll

Animator.exe
{version = 5.01}

wrfrme.dll

render.dll

raytrce.dll

animator.hlp

animator.ini

shpaes.tbl

123

Modeling an API

 An API is essentially an interface that is realized by one or more components. To

model an application programming interface

o Identify the programmatic seams in the system and model each seam as an

interface, collecting the attributes and operations that form this edge.

o Expose only those properties of the interface that are important to visualize in the

given context; otherwise, hid these properties, keeping them in the interface�s

specification for reference, as necessary.

o Model the realization of each API only as it is important to show the

configuration of a specific implementation.

 The above figure exposes the APIs of the executable in the previous two figures.

6.2 DEPLOYMENT

Animator.exe
{version = 5.01}

IScripts

IRendering

IModelsIApplication

124

 Nodes just like components, live in the material world and are an important

building block in modeling the physical aspects of a system. A node is a physical

element that exists at run time and represents a computational resource, generally having

at least some memory and, often, processing capability. Good nodes crisply represent the

vocabulary of the hardware in the solution domain.

 The UML provides a graphical representation of node, as canonical notation, and

this notation permits to visualize a node apart from any specific hardware. Using

stereotypes � one of the UML�s extensibility mechanisms � specific kinds of processors

and devices can be represented.

Nodes and Components

 In many ways, nodes are a lot like components; both have names; both may

participate in dependency, generalization and association relationships; both may be

nested; both may have instances; both may be participants in interaction. However there

are some significant differences between nodes and components. They include :

o Components are things that participate in the execution of a system; nodes are

things that execute components

o Components represent eh physical packaging of otherwise logical elements; nodes

represent the physical deployment of components.

 A set of objects or components that are allocated to a node as a group is called a

distribution unit. Nodes are also class-like in that attributes and operations can be

specified to them.

125

Organizing Nodes

 Nodes can be organized by grouping them in packages in the same manner in

which classes and components are organized. Nodes can also be organized by specifying

dependency, generalization and association (including aggregation) relationships among

them.

Modeling Processors and Devices

 Modeling the processors and devices that form the topology of a stand-alone,

embedded, client/server or distributed system is the most common use of nodes. To

model processors and devices,

 Identify the computational elements of the system�s deployment view and model

each as a node

 If these elements represent generic processors and devices, then stereotype them

as such. If they are kinds of processors and devices that part of the vocabulary of the

domain, then specify an appropriate stereotype with an icon for each

 As with class modeling, consider the attributes and operations that might apply to

each node.

Modeling the Distribution of Components

 When modeling the topology of a system, it is often useful to visualize or specify

the physical distribution of its components across the processors and devices that make

up the system. To model the distribution of components,

o For each significant component in the system, allocate it to a given node

126

o Consider duplicate locations for components.

o Render this allocation in one of three ways

1. Don�t make the allocation visible, but leave it as part of the backplane of the

model

2. Using dependency relationships. Connect each node with the components it

deploys

3. List the components deployed on a node in an additional compartment.

5.3 COLLABORATIONS

 In the context of a system�s architecture, a collaboration allows to name a

conceptual chunk that encompasses both static and dynamic aspects. A collaboration

names a society of classes, interfaces, and other elements that work together to provide

some cooperative behavior that�s bigger than the sum of all its parts. Collaborations are

<<10 � T Etherenet>>

<<RS-232>>

s : Server

processorSpeed = 300 mHz
memory = 128 meg

Deploys
dbadmin.exe
tktmstr.exe

: kiosk

Deploys
User.exe

c : Console

Deploys
admin.exe
config.exe

: RAID farm

127

used to specify the realization of use cases and operations, and to model the

architecturally significant mechanisms of the system.

Structure

 Collaborations have two aspects; a structural part that specifies the classes,

interfaces and other elements that work together to carry out the named collaboration and

a behavioral part that specifies the dynamics of how those elements interact. However,

unlike packages or subsystems, a collaboration does not own any of its structural

elements. Rather, a collaboration simply references or uses the classes, interfaces,

components, nodes and other structural elements that are declared elsewhere.

Behavior

 Whereas the structural part of a collaboration is typically rendered using a class

diagram, the behavioral part of a collaboration is typically rendered using an interaction

diagram. An interaction diagram specifies an interaction that represents a behavior

comprised of a set of messages that are exchanged among a set of objects with a context

to accomplish a specific purpose. The behavioral parts of a collaboration must be

consistent with its structural parts. This means that the objects found in a collaboration�s

interactions must be instances of classes found in its structural part.

Organizing Collaborations

 The heart of a system�s architecture is found in its collaborations, because the

mechanisms that shape a system represent significant design decisions. All well-

128

structured object-oriented systems are composed of a modestly sized and regular set of

such collaborations, so it�s important to organize the collaborations well. There are two

kinds of relationships concerning collaborations that needs to be considered.

 First, there is the relationship between a collaboration and the thing it realizes. A

collaboration may realize either a classifier or an operation, which means that the

collaboration specifies the structural and behavioral realization of that classifier or

operation.

 Second, there is the relationship among collaborations. Collaborations may refine

other collaborations, and this relationship is also modeled as refinement.

Modeling the Realization of a Use Case

 One of the purpose for which collaborations are used is to model the realization of

a use case. In general every use case should be realized by one or more collaborations.

For the system as a whole, the classifiers involved in a given collaboration that is linked

to a use case will participate in other collaborations. To model the realization of a use

case,

o Identify those structural elements necessary and sufficient to carry out the

semantics of the use case

o Capture the organization of these structural elements in class diagrams.

o Consider the individual scenarios that represent this use case. Each scenario

represents a specific path through the use case.

o Capture the dynamics of these scenarios in interaction diagrams

129

o Organize these structural and behavioral elements as a collaboration that can

connect to the use case via realization.

 The above figure shows a set of use cases drawn from a credit card validation

system, including the primary use cases and the subordinate use cases along with a

collaboration.

Modeling the Realization of an Operation

 Another purpose for which collaborations are used is to model the realization of

an operation. In many cases, realization is specified of an operation by going straight to

code. To model the implementation of an operation,

o Identify the parameters, return value and other objects visible to the operation

Customer

Generate Bill

Detect Card
Fraud

Place Order

Validate
transaction

Order
Management

130

o If the operation is trivial, represent its implementation directly in code.

o If the operation is algorithmically intensive, model its realization using an activity

diagram

o If the operation is complex or otherwise requires some detailed design work,

represent its implementation as a collaboration.

 The above figure shows the active class RenderFrame with three of its operations

exposed. The function progress is simple enough to be implemented directly in code, as

specified in the attached note. However the operation render is much more complicated,

so its implementation is realized by the collaboration Ray trace.

5.4 PATTERNS AND FRAMEWORKS

 All well-structured systems are full of patterns. A pattern provides a common

solution to a common problem in a given context. A mechanism is a design pattern that

applies to a society of classes; a framework is typically an architectural pattern that

provides an extensible template for applications within a domain.

RenderFrame

setContents
render
progress

Ray trace

Return
(totalPolygons-remaining)/
totalPolygons

131

 A pattern is a common solution to a common problem in a given context. A

mechanism is a design pattern that applies to a society of classes. A framework is an

architectural pattern that provides an extensible template for applications within a

domain.

Patterns and Architecture

 Patterns are part of the UML simply because patterns are important parts of a

developer�s vocabulary. By making the patterns in the system explicit, the system

becomes far more understandable and easier to evolve and maintain. Patterns help to

visualize, specify, construct and document the artifacts of a software-intensive system.

Forward engineering of a system is possible by selecting an appropriate set of patterns

and applying them to the abstractions specific to the domain.

 In practice, there are two kinds of patterns of interest � design patterns and

frameworks � and the UML provides a means of modeling both. When modeling pattern,

it typically stands alone in the context of some larger package, except for dependency

relationships bind them to other parts of the system.

Mechanisms

 A mechanism is just another name for a design pattern that applies to a society of

classes. This mechanism show up in two ways, namely, first, a mechanism simply names

a set of abstractions that work together to carry out some common and interesting

behavior. Second, a mechanism names a template for a set of abstractions that work

together to carry out some common and interesting behavior.

132

Frameworks

 A framework is an architectural pattern that provides an extensible template for

applications within a domain. A framework is bigger than a mechanism. In fact,

framework can be thought of as a kind of micro-architecture that encompasses a set of

mechanisms that work together to solve a common problem for a common domain.

Modeling Design Patterns

 One thing for which patterns are used is to model a design patter. When modeling

the design pattern both the inside and outside views are considered. When viewed from

outside, a design pattern is rendered as a parameterized collaboration. When viewed

from the inside, a design pattern is simply a collaboration and is rendered with its

structural and behavioral parts. To model a design pattern,

o Identify the common solution to the common problem and reify it as a

mechanism.

o Model the mechanism as a collaboration, providing its structural, as well as its

behavioral aspects.

o Identify the elements of the design pattern that must be bound to elements in a

specific context and render them as parameters to the collaboration.

133

 The above diagram shows a use of the Command design pattern. This model

shows a binding, in which Application, PasteCommand, OpenCommand, MenuItem and

Document are bound to the design pattern�s parameters.

Modeling Architectural Patterns

 The other thing for which patterns are used is to model architectural patterns.

When modeling such a framework, the infrastructure of an entire architecture is modeled

and it can be reused and adapted to some context. To model an architectural pattern,

 Harvest the framework from an existing, proven architecture.

 Model the framework as a stereotyped package, containing all the elements that

are necessary and sufficient

 Expose the slots, tabs, knobs and dials necessary to adapt the framework in the

form of design patterns and collaborations.

Receiver
Invoker

Command

Command

Client

Command

Client
Command
Invoker
Receiver

PasteCommand

Application

OpenCommand

MenuItem
Document

134

 The above diagram shows a specification of the Blackboard architectural pattern

and uses three use cases.

6.5 COMPONENT DIAGRAMS

 Component diagrams are one of the two kinds of diagrams found in modeling the

physical aspects of object-oriented systems. A component diagram shows the

organization and dependencies among a set of components. Component diagrams are not

only important for visualizing, specifying and documenting component-based systems,

but also for constructing executable systems through forward and reverse engineering.

Blackboard

KnowledgeSource
Blackboard
Control

Blackboard
KnowledgeSource

Apply new
knowledge sources

<<framework>>
Blackboard

135

Common Properties

 A component diagram is just a special kind of diagram and shares the same

common properties as do all other diagrams � a name and graphical contents that are a

projection into a model. What distinguishes a component diagram from all other kinds of

diagrams is its particular context. Component diagrams commonly contain

% Components

% Interfaces

% All the four relationships.

 Component diagrams may also contain packages or subsystems, both of which are

used to group elements of the model into larger chunks.

Common Uses

 Component diagrams are used to model the static implementation view of a

system. Typically use component diagrams in one of four ways.

 1. To model source code

 With most contemporary object-oriented programming languages, codes are cut

using integrated development environments that store source code in files. Component

diagrams are used to model the configuration management of these files, which represent

work-product components. To model a system�s source code,

o Either by forward or reverse engineering, identify the set of source code files of

interest and model them as components stereotyped as files

o For larger systems, use packages to show groups of source code files.

136

o Consider exposing a tagged value indicating such information as the version

number of the source code file and other things

o Model the compilation dependencies among these files using dependencies.

 Diagrams such as the above can be easily be generated by reverse engineering

from the information held by the development environment�s configuration management

tools.

<<parent>>
<<parent>>

device.cpp

interp.cpp

irq.h

signal.cpp
{version = 4.1}

signal.h
{version = 4.1}

signal.h
{version = 4.0}

signal.h
{version = 3.5}

137

 2. To model executable releases

 A release is a relatively complete and consistent set of artifacts delivered to an

internal or external user. In the context of components a release focuses on the parts

necessary to deliver a running system. To model an executable release,

o Identify the set of components that is to be modeled.

o Consider the stereotype of each component in this set.

o For each component in this set, consider its relationship to its neighbors.

 The above diagram models part of the executable release for an autonomous

robot. This diagram focuses on the deployment components associated with the robot�s

driving and calculation functions.

path.dll collision.dll

driver.dll

ISelfTest

IDrive

138

 3. To model physical databases

 Think of a physical database as the concrete realization of a schema, living in the

world of bits. Schemas, in effect, offer an API to persistent information; the model of a

physical database represents the storage of that information in the tables of a relational

database or the pages of an object-oriented database. To model a physical database,

o Identify the classes in the model that represent logical database schema.

o Select a strategy for mapping these classes to tables.

o To visualize, specify, construct and document the mapping, create a component

diagram that contains components stereotyped as tables.

o Where possible, use tools to help transform logical design into a physical design.

 The above diagram shows a set of database tables drawn from an information

system for a school.

 4. To model adaptable systems

 Some systems are quite static; their components enter the scene, participate in an

execution, and then depart. Other systems are more dynamic, involving mobile agents or

school.db

course department instructor school student

139

components that migrate for purposes of load balancing and failure recovery.

Component diagrams are used in conjunction with some of the UML�s diagrams for

modeling behavior to represent these kinds of systems. To model an adaptable system,

o Consider the physical distribution of the components that may migrate from node

to node.

o If the actions are to be modeled, that cause a component to migrate, create a

corresponding interaction diagram that contains component instances.

 The above diagram models the replication of the database from the previous

figure. If the details of each database has to be shown, then they can be represented in

their canonical form � a component stereotyped as a database.

6.6 DEPLOYMENT DIAGRAMS

 Deployment diagrams are one of the two kinds of diagrams used in modeling the

physical aspects of an object-oriented system. A deployment diagram shows the

configuration of run time processing nodes and the components that live on them.

The school database
on Server B replicates
the database on Server A

<<copy>>

: school.db
{location = Server A}

: school.db
{location = Server B}

140

 Deployment diagrams are not only important for visualizing, specifying and

documenting embedded, client/server and distributed systems, but also for managing

executable systems through forward and reverse engineering.

Common Properties

 A deployment diagram is just a special kind of diagram and shares the same

common properties as all other diagrams � a name and graphical contents that are a

projection into a model. What distinguishes a deployment diagram from all other kinds

of diagrams is its particular content. Deployment diagrams commonly contain

% Nodes

% Dependency and association relationships.

 Like all other diagrams, deployment diagrams may contain notes and constraints.

Common Uses

 Deployment diagrams are used to model the static deployment view of a system.

This view primarily addresses the distribution, delivery and installation of the parts that

make up the physical system. When modeling the static deployment view of a system,

typically deployment diagrams are used in one of three ways.

 1. To model embedded systems

 An embedded system is a software-intensive collection of hardware that interfaces

with the physical world. Embedded systems involve software that controls devices such

as motors, actuators, and displays and that, in turn, is controlled by external stimuli such

as sensor input, movement, and temperature changes.

141

 2. To model client/server systems

 A client/server system is a common architecture focused on making a clear

separation of concerns between the system�s user interface and the system�s persistent

data. Client/server systems are one end of the continuum of distributed systems and

require to make decisions about the network connectivity of clients to servers and about

the physical distribution of the system�s software components across the nodes.

 3. To model fully distributed systems

 At the other end of the continuum of distributed systems are those that are widely,

if not globally, distributed, typically encompassing multiple levels of servers. Such

systems are often hosts to multiple versions of software components, some of which ma

even migrate from node to node.

6.7 SYSTEMS AND MODELS

 The UML is a graphical language for visualizing, specifying, constructing and

documenting the artifacts of a software-intensive system. Well structured systems are

functionally, logically and physically cohesive, formed of loosely coupled subsystems.

Systems and Subsystems

 A system is the thing itself that are developed and for which models are build. A

system encompasses all the artifacts that constitute that thing, including all its models and

modeling elements, such as classes, interfaces, components, nodes and their relationships.

142

 A subsystem is simply a part of a system, and is used to decompose a complex

system into nearly independent parts. A system at one level of abstraction may be a

subsystem of a system at a higher level of abstraction. A system represents the highest-

level thing in a given context; the subsystems that make up a system provide a complete

and non-overlapping partitioning of the system as a whole.

Models and Views

 A model is a simplification of reality, in which reality is defined in the context of

the system being modeled. In short, a model is an abstraction of a system. Think of a

view as a projection into a model. A model is a special kind of package. As a package, a

model owns elements. The models associated with a system or subsystem completely

partition the elements of that system or subsystem, meaning that every element is owned

by exactly one package.

Trace

 Specifying relationships among elements such as classes, interfaces, components

and nodes is an important structural part of any model. Specifying the relationships

among elements such as documents, diagrams, and packages that live in different models

is an important part of managing the development artifacts of complex systems, many of

which may exist in multiple versions.

143

Modeling The Architecture of a System

 The most common use for which systems and models are applied is to organize

the elements as a system�s architecture. To model the architecture of a system,

 Identify the views that will be used to represent the architecture

 Specify the context for this system, including the actors that surround it.

 As necessary, decompose the system into its elementary subsystems.

system topology
distribution
delivery
installation

system assembly
configuration management

performance
scalability

throughput

behavior

Vocabulary functionality

Design View

Process View

Implementation
View

Deployment View

Use Case View

 logical physical

