
ADVANCED JAVA PROGRAMMING
SUBJECT CODE:18PCS2

 Java - The new programming language developed by
Sun Microsystems in 1991.

 Originally called Oak by James Gosling, one of the
inventors of the Java Language.

 Java -The name that survived a patent search
 Java Authors: James , Arthur Van , and others
 Java is really “C++ -- ++ “

 Originally created for consumer electronics (TV,
VCR, Freeze, Washing Machine, Mobile Phone).

 Java - CPU Independent language
 Internet and Web was just emerging, so Sun turned

it into a language of Internet Programming.
 It allows you to publish a webpage with Java code in

it.

Year Development

1990 Sun decided to developed special software that could be
used for electronic devices. A project called Green Project
created and head by James Gosling.

1991 Explored possibility of using C++, with some updates
announced a new language named “Oak”

1992 The team demonstrated the application of their new
language to control a list of home appliances using a hand
held device.

1993 The World Wide Web appeared on the Internet and
transformed the text-based interface to a graphical rich
environment. The team developed Web applets (time
programs) that could run on all types of computers
connected to the Internet.

Year Development

1994 The team developed a new Web browsed called “Hot Java”
to locate and run Applets. HotJava gained instance success.

1995 Oak was renamed to Java, as it did not survive “legal”
registration. Many companies such as Netscape and
Microsoft announced their support for Java

1996 Java established itself it self as both 1. “the language for
Internet programming” 2. a general purpose OO language.

1997- A class libraries, Community effort and standardization,
Enterprise Java, Clustering, etc..

 Simple and Powerful
 Safe
 Object Oriented
 Robust
 Architecture Neutral and Portable
 Interpreted and High Performance
 Threaded
 Dynamic

 Familiar, Simple, Small
 Compiled and Interpreted
 Platform-Independent and Portable
 Object-Oriented
 Robust and Secure
 Distributed
 Multithreaded and Interactive
 High Performance
 Dynamic and Extensible

Text Editor Compiler Interpreter

Programmer

Source Code

.java file

Byte Code

.class file

Hardware and
Operating System

Notepad,
emacs,vi

javac java
appletviewer
netscape

JAVA COMPILER

JAVA BYTE CODE

JAVA INTERPRETER

Windows 95 Macintosh Solaris Windows NT

(translator)

(same for all platforms)

(one for each different system)

 Java Compiler - Java source code (file with extension
.java) to bytecode (file with extension .class)

 Bytecode - an intermediate form, closer to machine
representation

 A interpreter (virtual machine) on any target
platform interprets the bytecode.

 Core Classes
language
Utilities
Input/Output
Low-Level Networking
Abstract Graphical User Interface

 Internet Classes
TCP/IP Networking
WWW and HTML
Distributed Programs

 A programming language is a set of commands, instructions,
and other syntax use to create a software program. Languages
that programmers use to write code are called "high-level
languages." This code can be compiled into a "low-level
language," which is recognized directly by the computer
hardware.

 High-level languages are designed to be easy to read and
understand. This allows programmers to write source code in a
natural fashion, using logical words and symbols. For example,
reserved words like function, while, if, and else are used in most
major programming languages. Symbols like <, >, ==, and != are
common operators. Many high-level languages are similar
enough that programmers can easily understand source code
written in multiple languages.

 Examples of high-level languages include C++, Java, Perl, and PHP. Languages
like C++ and Java are called "compiled languages" since the source code must
first be compiled in order to run. Languages like Perl and PHP are called
"interpreted languages" since the source code can be run through
an interpreter without being compiled. Generally, compiled languages are
used to create software applications, while interpreted languages are used for
running scripts, such as those used to generate content for dynamic websites.

 Low-level languages include assembly and machine languages. An assembly
language contains a list of basic instructions and is much more difficult to
read than a high-level language. In rare cases, a programmer may decide to
code a basic program in an assembly language to ensure it operates as
efficiently as possible. An assembler can be used to translate the assembly
code into machine code. The machine code, or machine language, contains a
series of binary codes that are understood directly by a computer's CPU.
Needless to say, machine language is not designed to be human readable.

 Programmers write their programs in a high level
programming language such as Java, C++.

 A computer only understands its own language
called “machine language”.

 A compiler is needed to translate high level
program code into machine language code that
will be understood by the computer.

 After a program is compiled, the machine code can
be executed on the computer, say Windows, for
which it was compiled. If the program is to be
executed on another platform, say Mac, the program
will first have to be compiled for that platform and
can then be executed.

 Java is a very popular high level programming
language

 Java has been used widely to create various types of
computer applications such as database applications,
desktop applications, Web based applications,
mobile applications, and games among others.

Based on the data type of a variable, the operating
system allocates memory and decides what can be
stored in the reserved memory.

Therefore, by assigning different data types to
variables, you can store integers, decimals, or
characters in these variables.

Literals and Variables
 Literals

 456—a literal numerical constant
 System.out.println(456); // Java
 “A Literal String Constant”
 System.out.println(“My First Java”); // Java

 Variables
 It is a named computer location in memory that holds values

that might vary
 That location have an address

Data type Declarations
 Specify the type of data and the length of the data item

in bytes
 int, short, long
 float, double
 boolean
 Char

There are eight primitive data types
 boolean, byte, char, double, float, int, long, short

PRIMITIVE SIZE IN BITS RANGE

int 32 -2 to the 31st to 2 to the 31st

int 4 bytes 2147483648

long 64 -- 8 bytes -2 to the 63rd to 2 to the 63rd

float 32 +- 1.5 x 10^45

double 64 +- 5.0 x 10^324

decimal 128 28 significant figures

string 16 bits per char Not applicable

char 16 One character

boolean 8 True or false

Numeric data types in Java:
integers

Data type name Minimum value Maximum value

byte -128 127

short -32,768 32,767

int -2,147,483,648 2,147,483,647

long -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Numeric data types in Java:
floating-point numbers

Data type name Minimum value Maximum value

float -3.40282347 x 1038 3.40282347 x 1038

double -1.79769313486231570 x 10308 1.79769313486231570 x 10308

The assignment operator =
 int A = 36;

 Sets a = to the constant 36 at execution time

 Int A =36;
 Sets A = to the constant 36 at compile time
 Initializes A to 36 at the time memory is set aside for it

Conversion Between Primitive Data
Types

 Java is known as a strongly typed language.
 In a Strongly Typed Language before a value is assigned to a

variable, Java checks the types of the variable and the value being
assigned to it to determine if they are compatible.

 For example:
int x;
double y = 2.5;
x = y;

This will cause an error
int x;
short y;
x = y;

This will NOT cause an error
…but, why?

Conversion Between Primitive Data
Types
 Types in Java have “ranks”.

 Ranks here means that if a type has a higher rank than
another, it can hold more numbers, and thus, will not
lose any precision.

 Ranks (Highest to Lowest):
1. double

2. float

3. long

4. int

5. short

6. byte

Variables
 Variables are containers for storing data values.
 In Java, there are different types of variables, for example:
 String - stores text, such as "Hello". String values are

surrounded by double quotes
 int - stores integers (whole numbers), without decimals,

such as 123 or -123
 float - stores floating point numbers, with decimals, such

as 19.99 or -19.99
 char - stores single characters, such as 'a' or 'B'. Char values

are surrounded by single quotes
 boolean - stores values with two states: true or false

An array is a data structure that contains a group of
elements. Typically these elements are all of the same data
type, such as an integer or string. Arrays are commonly used
in computer programs to organize data so that a related set of
values can be easily sorted or searched.

Arrays - Introduction
 An array is a group of contiguous or related data items that

share a common name.
 Used when programs have to handle large amount of data
 Each value is stored at a specific position
 Position is called a index or superscript. Base index = 0
 The ability to use a single name to represent a collection of

items and refer to an item by specifying the item number
enables us to develop concise and efficient programs.

29

Arrays - Introduction

30

 A[0]=69

69

61

70

89

23

10

9

0

1

2

3

4

5

6

index

values

Declaration of Arrays
 Like any other variables, arrays must declared and created before they

can be used. Creation of arrays involve three steps:
 Declare the array
 Create storage area in primary memory.
 Put values into the array (i.e., Memory location)

 Declaration of Arrays:
 Form 1:

Type arrayname[]
 Form 2:

 Type [] arrayname;

 Examples:
int[] students;
int students[];

 Note: we don’t specify the size of arrays in the declaration.

31

Creation of Arrays
 After declaring arrays, we need to allocate memory for

storage array items.
 In Java, this is carried out by using “new” operator, as

follows:
 Arrayname = new type[size];

 Examples:
 students = new int[7];

32

Initialisation of Arrays
 Once arrays are created, they need to be initialised with

some values before access their content. A general form of
initialisation is:
 Arrayname [index/subscript] = value;

 Example:
 students[0] = 50;
 students[1] = 40;

 Java creates arrays starting with subscript 0 and ends with
value one less than the size specified.

 Java protects arrays from overruns and under runs. Trying
to access an array beyond its boundaries will generate an
error message.

33

Arrays – Length
 Arrays are fixed length
 Length is specified at create time
 In java, all arrays store the allocated size in a variable

named “length”.
 We can access the length of arrays as

arrayName.length:
e.g. int x = students.length; // x = 7

 Accessed using the index
e.g. int x = students [1]; // x = 40

34

Arrays – Example
// StudentArray.java: store integers in arrays and access
public class StudentArray{

public static void main(String[] args) {
int[] students;
students = new int[7];
System.out.println("Array Length = " + students.length);

for (int i=0; i < students.length; i++)
students[i] = 2*i;

System.out.println("Values Stored in Array:");
for (int i=0; i < students.length; i++)

System.out.println(students[i]);
}

}

35

Arrays – Initializing at Declaration
 Arrays can also be initialised like standard variables at

the time of their declaration.
 Type arrayname[] = {list of values};

 Example:
int[] students = {55, 69, 70, 30, 80};

 Creates and initializes the array of integers of length 5.
 In this case it is not necessary to use the new operator.

36

Arrays – Example
// StudentArray.java: store integers in arrays and access
public class StudentArray{

public static void main(String[] args) {

int[] students = {55, 69, 70, 30, 80};

System.out.println("Array Length = " + students.length);
System.out.println("Values Stored in Array:");
for (int i=0; i < students.length; i++)

System.out.println(students[i]);
}

}

37

Two Dimensional Arrays

 Two dimensional
arrays allows us to
store data that are
recorded in table. For
example:

 Table contains 12
items, we can think of
this as a matrix
consisting of 4 rows
and 3 columns.

Item1 Item2 Item3

Salesgirl #1 10 15 30

Salesgirl #2 14 30 33

Salesgirl #3 200 32 1

Salesgirl #4 10 200 4

38

Sold

Person

2D arrays manipulations
 Declaration:

 int myArray [][];
 Creation:

 myArray = new int[4][3]; // OR
 int myArray [][] = new int[4][3];

 Initialisation:
 Single Value;

 myArray[0][0] = 10;

 Multiple values:
 int tableA[2][3] = {{10, 15, 30}, {14, 30, 33}};
 int tableA[][] = {{10, 15, 30}, {14, 30, 33}};

40

Example-Multidimensional Array
public class multiDimensional
{

public static void main(String args[])
{

// declaring and initializing 2D array
int arr[][] = { {2,7,9},{3,6,1},{7,4,2} };

// printing 2D array
for (int i=0; i< 3 ; i++)
{

for (int j=0; j < 3 ; j++)
System.out.print(arr[i][j] + " ");

System.out.println();
}

}
}

Assignment Operator (=)
lvalue = rvalue;

• Take the value of the rvalue and store
it in the lvalue.

• The rvalue is any constant, variable or
expression.

• The lvalue is named variable.

w = 10;

x = w;

z = (x - 2)/(2 + 2);

Mathematical Operators

 Addition +
 Subtraction -
 Multiplication *
 Division /
 Modulus %

Shorthand Operators
+=, -=, *=, /=, %=

Common Shorthand
a = a + b; a += b;
a = a - b; a -= b;
a = a * b; a *= b;
a = a / b; a /= b;
a = a % b; a %= b;

Shorthand Increment and
Decrement ++ and --

Common Shorthand

a = a + 1; a++; or ++a;

a = a - 1; a--; or --a;

Casting

The Logical
and

Relational Operators

Relational Operators
> < >= <= == !=

Primitives

• Greater Than >

• Less Than <

• Greater Than or Equal >=

• Less Than or Equal <=

Primitives or Object References

• Equal (Equivalent) ==

• Not Equal !=

The Result is Always true or false

Logical Operators (boolean)

• Logical AND &&

• Logical OR ||

• Logical NOT !

Logical (&&) Operator Examples
public class Example {
public static void main(String[] args) {

boolean t = true;
boolean f = false;

System.out.println("f && f " + (f && f));
System.out.println("f && t " + (f && t));
System.out.println("t && f " + (t && f));
System.out.println("t && t " + (t && t));

}
}

> java Example
f && f false
f && t false
t && f false
t && t true
>

Logical (||) Operator Examples
public class Example {
public static void main(String[] args) {

boolean t = true;
boolean f = false;

System.out.println("f || f " + (f || f));
System.out.println("f || t " + (f || t));
System.out.println("t || f " + (t || f));
System.out.println("t || t " + (t || t));

}
}

> java Example
f || f false
f || t true
t || f true
t || t true
>

Logical (!) Operator Examples

public class Example {
public static void main(String[] args) {

boolean t = true;
boolean f = false;

System.out.println("!f " + !f);
System.out.println("!t " + !t);

}
}

> java Example
!f true
!t false
>

Ternary Operator
? :

If true this expression is
evaluated and becomes the
value entire expression.

Any expression that evaluates
to a boolean value.

If false this expression is
evaluated and becomes the
value entire expression.

boolean_expression ? expression_1 : expression_2

Ternary (? :) Operator Examples

public class Example {
public static void main(String[] args) {

boolean t = true;
boolean f = false;

System.out.println("t?true:false "+(t ? true : false));
System.out.println("t?1:2 "+(t ? 1 : 2));
System.out.println("f?true:false "+(f ? true : false));
System.out.println("f?1:2 "+(f ? 1 : 2));

}
}

> java Example
t?true:false true
t?1:2 1
f?true:false false
f?1:2 2
>

String (+) Operator
String Concatenation

"Now is " + "the time."

"Now is the time."

String (+) Operator
Automatic Conversion to a String

If either expression_1If either expression_1 or expression_2 evaluates
to a string the other will be converted to a string
if needed. The result will be their concatenation.

expression_1 + expression_2

String IsEmpty()
This method checks whether the String

contains anything or not. If the java String is Empty,
it returns true else false.

public class IsEmptyExample{

public static void main(String args[]){
String s1="";
String s2="hello";
System.out.println(s1.isEmpty()); // true
System.out.println(s2.isEmpty()); // false
}
}

String Trim()
The java string trim() method removes the leading and
trailing spaces. It checks the unicode value of space character
(‘u0020’) before and after the string. If it exists, then removes
the spaces and return the omitted string.

public class StringTrimExample{
public static void main(String args[]){
String s1=" hello ";
System.out.println(s1+"how are you"); // without trim()
System.out.println(s1.trim()+"how are you"); // with trim()
}
}

String toLowerCase()
The java string toLowerCase() method converts all the
characters of the String to lower case.

public class StringLowerExample
{

public static void main(String args[]){
String s1="HELLO HOW Are You?”;
String s1lower=s1.toLowerCase();
System.out.println(s1lower);}
}

String toUpper()
The Java String toUpperCase() method converts all the
characters of the String to upper case.

public class StringUpperExample
{

public static void main(String args[])
{
String s1="hello how are you";
String s1upper=s1.toUpperCase();
System.out.println(s1upper);
}
}

Operator Precedence
+ - ++ -- ! ~ ()

* / %

+ -

<< >> >>>

> < >= <= instanceof

== !=

& | ^

&& ||

?:

= (and += etc.)

Unary

Arithmetic

Shift

Comparison

Logical Bit

Boolean

Ternary

Assignment

Selection Statements
–Using if and if...else
–Nested if Statements
–Using switch Statements
–Conditional Operator

Repetition Statements
–Looping: while, do-while, and for

–Nested loops
–Using break and continue

Selection Statements
 if Statements

 switch Statements

 Conditional Operators

if Statements
if (booleanExpression) {

statement(s);
}
Example:
if ((i > 0) && (i < 10)) {
System.out.println("i is an " +

"integer between 0 and 10");
}

The if...else Statement
if (booleanExpression) {

statement(s)-for-the-true-case;

}

else {

statement(s)-for-the-false-case;

}

if...else Example
if (radius >= 0) {
area = radius*radius*PI;

System.out.println("The area for the “
+ “circle of radius " + radius +
" is " + area);

}
else {
System.out.println("Negative input");

}

Nested If Statements

switch Statements
switch (year) {

case 7: annualInterestRate = 7.25;
break;

case 15: annualInterestRate = 8.50;
break;

case 30: annualInterestRate = 9.0;
break;

default: System.out.println(
"Wrong number of years, enter 7, 15, or 30");

}

switch Statement Flow Chart

switch Statement Rules
The switch-expression must yield a value of char, byte, short,
or int type and must always be enclosed in parentheses.

The value1, ..., and valueN must have the same data type as
the value of the switch-expression. The resulting statements in
the case statement are executed when the value in the case
statement matches the value of the switch-expression. (The
case statements are executed in sequential order.)

The keyword break is optional, but it should be used at the end
of each case in order to terminate the remainder of the switch
statement. If the break statement is not present, the next case
statement will be executed.

Repetitions
 while Loops

 do-while Loops
 for Loops

 break and continue

while Loop Flow Chart

false

true

Statement(s)

Next
Statement

 Continuation
 condition?

while (continuation-condition) {

// loop-body;

}

while Loop Flow Chart, cont.

int i = 0;
while (i < 100) {
System.out.println(
"Welcome to Java!");

i++;
}

false

true

System.out.println("Welcoem to Java!");
 i++;

Next
Statement

(i < 100)

 i = 0;

do-while Loop

false

true

Statement(s)

Next
Statement

 Continue
 condition?

do {

// Loop body;

} while (continue-condition);

for Loop Flow Chart
Initial-Action

false

true

Action-After-
Each-Iteration

Statement(s)
(loop-body)

Next
Statement

 Continuation
 condition?

for (initial-action;
loop-continuation-condition;
action-after-each-iteration) {
//loop body;

}

The break Keyword
false

true

Statement(s)

Next
Statement

 Continuation
 condition?

Statement(s)

break

The continue Keyword
false

true

Statement(s)

Next
Statement

 Continue
 condition?

Statement(s)

continue

Condn?Exp1:Exp2

Introduction
 Java is a true Object Oriented language and therefore the

underlying structure of all Java programs is classes.

 Anything we wish to represent in Java must be
encapsulated in a class that defines the “state” and
“behaviour” of the basic program components known as
objects.

 Classes create objects and objects use methods to
communicate between them. They provide a convenient
method for packaging a group of logically related data
items and functions that work on them.

 A class essentially serves as a template for an object and

behaves like a basic data type “int”.

 It is therefore important to understand how the fields and

methods are defined in a class and how they are used to

build a Java program that incorporates the basic Object

Oriented concepts such as encapsulation, inheritance, and

polymorphism.

Classes
 A class is a collection of fields (data) and methods

(procedure or function) that operate on that data.

Circle

centre
radius

circumference()
area()

Classes
 The basic syntax for a class definition:

 Bare bone class – no fields, no methods

public class Circle {
// my circle class

}

class ClassName [extends
SuperClassName]
{

[fields declaration]
[methods declaration]

}

Adding Fields: Class Circle with fields
 Add fields

 The fields (data) are also called the instance varaibles.

public class Circle {
public double x, y; // centre coordinate
public double r; // radius of the circle

}

Adding Methods
 A class with only data fields has no life. Objects

created by such a class cannot respond to any
messages.

 Methods are declared inside the body of the class
but immediately after the declaration of data
fields.

 The general form of a method declaration is:

type MethodName (parameter-list)
{

Method-body;
}

Adding Methods to Class Circle
public class Circle {

public double x, y; // centre of the circle
public double r; // radius of circle

//Methods to return circumference and area
public double circumference() {

return 2*3.14*r;
}
public double area() {

return 3.14 * r * r;
}

}

Method Body

Accessing Object/Circle Data
 Similar to C syntax for accessing data defined in a

structure.

Circle aCircle = new Circle();

aCircle.x = 2.0 // initialize center and radius
aCircle.y = 2.0
aCircle.r = 1.0

ObjectName.VariableName
ObjectName.MethodName(parameter-list)

Executing Methods in Object/Circle
 Using Object Methods:

Circle aCircle = new Circle();

double area;
aCircle.r = 1.0;
area = aCircle.area();

sent ‘message’ to aCircle

Using Circle Class
// Circle.java: Contains both Circle class and its user class
//Add Circle class code here
class MyMain
{

public static void main(String args[])
{

Circle aCircle; // creating reference
aCircle = new Circle(); // creating object
aCircle.x = 10; // assigning value to data field
aCircle.y = 20;
aCircle.r = 5;
double area = aCircle.area(); // invoking method
double circumf = aCircle.circumference();
System.out.println("Radius="+aCircle.r+" Area="+area);
System.out.println("Radius="+aCircle.r+" Circumference ="+circumf);

}
}

class Circle {

public double x, y; // centre of the circle
public double r; // radius of circle

//Methods to return circumference and area
public double circumference() {

return 2*3.14*r;
}
public double area() {

return 3.14 * r * r;
}

}
public class MyMain
{

public static void main(String args[])
{

Circle aCircle; // creating reference
aCircle = new Circle(); // creating object
aCircle.x = 10; // assigning value to data field
aCircle.y = 20;
aCircle.r = 5;
double area = aCircle.area(); // invoking method
double circumf = aCircle.circumference();
System.out.println("Radius="+aCircle.r+" Area="+area);
System.out.println("Radius="+aCircle.r+" Circumference ="+circumf);

}
}

 Java allows objects to initialize themselves when they

are created.

 A constructor initializes an object immediately upon

creation.

 It has the same name as the class in which it resides

and is syntactically similar to a method.

 Once defined, the constructor is automatically called

immediately after the object is created.

 By implementing constructor, it would be

simpler and more concise to have all of the setup

done at the time the object is first created.

 It can be tedious to initialize all of the variables

in a class each time an instance is created.

 This automatic initialization is performed

through the use of a constructor.

 Constructors have no return type

 This is because the implicit return type of a class’

constructor is the class type itself.

 It is the constructor’s job to initialize the internal state

of an object so that the code creating an instance will

have a fully initialized, usable object immediately.

class Box
{
double width;
double height;
double depth;
Box()

{
System.out.println("Constructing Box");
width = 10;
height = 10;
depth = 10;

}
double volume()

{
return width * height * depth;

}
}

class BoxDemo6
{

public static void main(String args[])
{
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;
vol = mybox1.volume();
System.out.println("Volume is " + vol);
vol = mybox2.volume();
System.out.println("Volume is " + vol);
}

}

int month;
int year

class Month

Defining Classes
 A class contains data declarations (static and

instance variables) and method declarations
(behaviors)

Data declarations

Method declarations

Methods
 A program that provides some functionality can be long

and contains many statements

 A method groups a sequence of statements and should
provide a well-defined, easy-to-understand functionality

 a method takes input, performs actions, and produces output

 In Java, each method is defined within specific class

Method Declaration: Header
 A method declaration begins with a method header

method
name

return
type

parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal argument

class MyClass
{

static int min (int num1, int num2)
…

properties

Java static method

 If you apply static keyword with any method, it is known as

static method.

 A static method belongs to the class rather than the object

of a class.

 A static method can be invoked without the need for

creating an instance of a class.

 A static method can access static data member and can

change the value of it.

Method Declaration: Body
The header is followed by the method body:

static int min(int num1, int num2)
{

int minValue = num1 < num2 ? num1 : num2;
return minValue;

}

class MyClass
{

…

…

}

The return Statement
 The return type of a method indicates the type of value

that the method sends back to the calling location
 A method that does not return a value has a void

return type

 The return statement specifies the value that will be
returned
 Its expression must conform to the return type

Calling a Method
 Each time a method is called, the values of the

actual arguments in the invocation are assigned to
the formal arguments

static int min (int num1, int num2)

{
int minValue = (num1 < num2 ? num1 : num2);
return minValue;

}

int num = min (2, 3);

Method Control Flow
 A method can call another method, who can call

another method, …

min(num1, num2, num3) println()

…println(…)
min(1, 2, 3);

main

public class ExampleMinNumber {

public static void main(String[] args) {
int a = 11;
int b = 6;
int c = minFunction(a, b);
System.out.println("Minimum Value = " + c);

}

/** returns the minimum of two numbers */
public static int minFunction(int n1, int n2) {

int min;
if (n1 > n2)

min = n2;
else

min = n1;

return min;
}

}

Method Overloading
 Sometimes you want to have a multiple methods with the same

name be able to do different operations on different parameters.
 Java allows this through a process called overloading.

 Overloading is having multiple methods in the same class with the same
name, but accept different types of parameters.

 For instance:
public double add(double num1, double num2) {

return num1 + num2;
}

public String add(String str1, String str2) {
return str1 + str2;

}

 Even though both of these methods are named add, they perform
different operations on different parameters.

Method Overloading
 When we call a method, the compiler must determine

which of the methods to use through a process called
binding.
 Java binds methods by matching a method’s signature to

how it is called.
 A method’s signature consists of its name and the data types

of its parameters.
 The signatures of the two previous methods are:

 add(double, double)
 add(String, String)

 So the java compiler can tell which method to used based on
how it was called.

Method Overloading
 A class may define multiple methods with the same

name---this is called method overloading
 usually perform the same task on different data types

 Example: The PrintStream class defines multiple println
methods, i.e., println is overloaded:

println (String s)
println (int i)
println (double d)

…
 The following lines use the System.out.print method for

different data types:
System.out.println ("The total is:");
double total = 0;
System.out.println (total);

Method Overloading: Signature
 The compiler must be able to determine which version

of the method is being invoked
 This is by analyzing the parameters, which form the

signature of a method
 the signature includes the type and order of the parameters

 if multiple methods match a method call, the compiler picks the
best match

 if none matches exactly but some implicit conversion can be done to
match a method, then the method is invoke with implicit
conversion.

 the return type of the method is not part of the signature

class DisplayOverloading2
{

public void disp(char c)
{

System.out.println(c);
}
public void disp(int c)
{

System.out.println(c);
}

}

public class Sample2
{

public static void main(String args[])
{

DisplayOverloading2 obj = new DisplayOverloading2();
obj.disp('a');
obj.disp(5);

}
}

Kinds of nested/inner classes
 Inner class

 defined inside another class
 but each instance of an inner class is transparently

associated with an instance of the outer class
 method invocations can be transparently redirected to

outer instance
 Anonymous inner classes

 unnamed inner classes
 Nested class

 defined inside another class
 has access to private members of enclosing class
 But just a normal class

Inner Classes
 Description

 Class defined in scope of another class
 Property

 Can directly access all variables & methods of enclosing
class (including private fields & methods)

 Example
public class OuterClass {

public class InnerClass {
...

}
}

Inner Classes
 May be named or anonymous
 Useful for

 Logical grouping of functionality
 Data hiding
 Linkage to outer class

 Examples
 Iterator for Java Collections
 ActionListener for Java GUI widgets

Inner Classes
 Inner class instance

 Has association to an instance of outer class
 Must be instantiated with an enclosing instance
 Is tied to outer class object at moment of creation (can

not be changed)

Anonymous Inner Class
 Doesn’t name the class
 inner class defined at the place where you create an

instance of it (in the middle of a method)
 Useful if the only thing you want to do with an inner

class is create instances of it in one location

 In addition to referring to fields/methods of the outer
class, can refer to final local variables

Syntax for anonymous inner classes
 use

new Foo() {
public int one() { return 1; }
public int add(int x, int y) { return x+y; }
};

 to define an anonymous inner class that:
 extends class Foo
 defines methods one and add

MyList without anonymous inner class
 Code

public class MyList implements Iterable {
private Object [] a;
private int size;
public Iterator iterator() {
return new MyIterator();
}

public class MyIterator implements Iterator {
private int pos = 0;
public boolean hasNext() { return pos < size; }
public Object next() { return a[pos++]; }

}
}

MyList with anonymous inner class
 Code

public class MyList implements Iterable {
private Object [] a;
private int size;
public Iterator iterator() {
return new Iterator () {

private int pos = 0;
public boolean hasNext() { return pos < size; }
public Object next() { return a[pos++]; }

}
}

Nested class
 Declared like a standard inner class, except you say

“static class” rather than “class”.
 For example:

class LinkedList {
static class Node {

Object head;
Node tail;
}

Node head;
}

Nested classes
 An instance of an inner class does not contain an implicit

reference to an instance of the outer class
 Still defined within outer class, has access to all the private

fields
 Use if inner object might be associated with different outer

objects, or survive longer than the outer object
 Or just don’t want the overhead of the extra pointer in

each instance of the inner object

class Outer_Demo {
int num;

// inner class
private class Inner_Demo {

public void print() {
System.out.println("This is an inner class");

}
}

// Accessing he inner class from the method within
void display_Inner() {

Inner_Demo inner = new Inner_Demo();
inner.print();

}
}

public class My_class {

public static void main(String args[]) {
// Instantiating the outer class
Outer_Demo outer = new Outer_Demo();

// Accessing the display_Inner() method.
outer.display_Inner();

}
}

String class facts
 An object of the String class represents a string of

characters.
 The String class belongs to the java.lang package,

which does not require an import statement.
 Like other classes, String has constructors and

methods.
 Unlike other classes, String has two operators, +

and += (used for concatenation).

Literal Strings
 are anonymous objects of the String class
 are defined by enclosing text in double quotes.

“This is a literal String”
 don’t have to be constructed.
 can be assigned to String variables.
 can be passed to methods and constructors as

parameters.
 have methods you can call.

Literal String examples
//assign a literal to a String variable

String name = “Robert”;

//calling a method on a literal String

char firstInitial = “Robert”.charAt(0);

//calling a method on a String variable

char firstInitial = name.charAt(0);

Immutability
 Once created, a string cannot be changed: none of

its methods changes the string.
 Such objects are called immutable.
 Immutable objects are convenient because several

references can point to the same object safely:
there is no danger of changing an object through
one reference without the others being aware of
the change.

Advantages Of Immutability
Uses less memory.

String word1 = "Java";
String word2 = word1;

String word1 = “Java";
String word2 = new String(word1);

word1

OK
Less efficient:
wastes memory

“Java"

“Java"

“Java"
word2

word1

word2

Disadvantages of Immutability
Less efficient — you need to create a new string and

throw away the old one even for small changes.

String word = “Java";
char ch = Character.toUpperCase(word.charAt (0));
word = ch + word.substring (1);

word “java"

“Java"

Empty Strings
 An empty String has no characters. It’s length

is 0.

 Not the same as an uninitialized String.

String word1 = "";
String word2 = new String();

private String errorMsg; errorMsg
is null

Empty strings

No Argument Constructors
 No-argument constructor creates an empty String.

Rarely used.

 A more common approach is to reassign the variable to
an empty literal String. (Often done to reinitialize a variable
used to store input.)

String empty = “”;//nothing between quotes

String empty = new String();

Copy Constructors
 Copy constructor creates a copy of an existing String.

Also rarely used.
 Not the same as an assignment.

String word = new String(“Java”);
String word2 = new String(word);

word

word2

“Java"
“Java"

Copy Constructor: Each variable points to a different copy of the String.

String word = “Java”;
String word2 = word;

word
“Java"

word2

Assignment: Both variables point to the same String.

Other Constructors
Most other constructors take an array as a parameter to

create a String.

char[] letters = {‘J’, ‘a’, ‘v’, ‘a’};
String word = new String(letters);//”Java”

Methods — length, charAt
int length();

char charAt(i);

 Returns the number of characters in
the string

 Returns the char at position i.

7
’n'

”Problem".length();
”Window".charAt (2);

Returns:

Character positions in strings are numbered
starting from 0 – just like arrays.

Methods — substring
 String subs = word.substring (i, k);

 returns the substring of chars in
positions from i to k-1

 String subs = word.substring (i);
 returns the substring from the i-th

char to the end

“lev"
“mutable"
"" (empty string)

”television".substring (2,5);
“immutable".substring (2);
“bob".substring (9);

Returns:

television

i k

television

i

Returns a new String by copying characters from an existing String.

Methods — Concatenation
String word1 = “re”, word2 = “think”; word3 = “ing”;
int num = 2;

 String result = word1 + word2;
//concatenates word1 and word2 “rethink“

 String result = word1.concat (word2);
//the same as word1 + word2 “rethink“

 result += word3;
//concatenates word3 to result “rethinking”

 result += num; //converts num to String
//and concatenates it to result “rethinking2”

Methods — Find (indexOf)

String name =“President George Washington";

date.indexOf (‘P'); 0
date.indexOf (‘e'); 2
date.indexOf (“George"); 10
date.indexOf (‘e', 3); 6

date.indexOf (“Bob"); -1
date.lastIndexOf (‘e'); 15

Returns:

(not found)

(starts searching
at position 3)

0 2 6 10 15

Methods — Equality
boolean b = word1.equals(word2);

returns true if the string word1 is equal to word2

boolean b = word1.equalsIgnoreCase(word2);
returns true if the string word1 matches word2,
case-blind

b = “Raiders”.equals(“Raiders”);//true
b = “Raiders”.equals(“raiders”);//false
b = “Raiders”.equalsIgnoreCase(“raiders”);//true

if(team.equalsIgnoreCase(“raiders”))
System.out.println(“Go You “ + team);

Methods — Comparisons
int diff = word1.compareTo(word2);

returns the “difference” word1 - word2

int diff = word1.compareToIgnoreCase(word2);
returns the “difference” word1 - word2,
case-blind

Usually programmers don’t care what the numerical “difference” of
word1 - word2 is, just whether the difference is negative (word1
comes before word2), zero (word1 and word2 are equal) or positive
(word1 comes after word2). Often used in conditional statements.

if(word1.compareTo(word2) > 0){
//word1 comes after word2…

}

Comparison Examples
//negative differences
diff = “apple”.compareTo(“berry”);//a before b
diff = “Zebra”.compareTo(“apple”);//Z before a
diff = “dig”.compareTo(“dug”);//i before u
diff = “dig”.compareTo(“digs”);//dig is shorter

//zero differences
diff = “apple”.compareTo(“apple”);//equal
diff = “dig”.compareToIgnoreCase(“DIG”);//equal

//positive differences
diff = “berry”.compareTo(“apple”);//b after a
diff = “apple”.compareTo(“Apple”);//a after A
diff = “BIT”.compareTo(“BIG”);//T after G
diff = “huge”.compareTo(“hug”);//huge is longer

Methods — trim
String word2 = word1.trim ();

returns a new string formed from word1 by
removing white space at both ends
does not affect whites space in the middle

String word1 = “ Hi Bob “;
String word2 = word1.trim();
//word2 is “Hi Bob” – no spaces on either end
//word1 is still “ Hi Bob “ – with spaces

Methods — replace
String word2 = word1.replace(oldCh, newCh);

returns a new string formed from word1 by
replacing all occurrences of oldCh with newCh

String word1 = “rare“;
String word2 = “rare“.replace(‘r’, ‘d’);
//word2 is “dade”, but word1 is still “rare“

Methods — Changing Case
String word2 = word1.toUpperCase();
String word3 = word1.toLowerCase();

returns a new string formed from word1 by
converting its characters to upper (lower) case

String word1 = “HeLLo“;
String word2 = word1.toUpperCase();//”HELLO”
String word3 = word1.toLowerCase();//”hello”
//word1 is still “HeLLo“

Replacements
 Example: to “convert” word1 to upper case, replace the

reference with a new reference.

 A common bug:

word1 = word1.toUpperCase();

word1.toUpperCase(); word1
remains

unchanged

Numbers to Strings
Three ways to convert a number into a string:

1. String s = "" + num;

2. String s = Integer.toString (i);
String s = Double.toString (d);

3. String s = String.valueOf (num);
s = String.valueOf(123);//”123”

s = “” + 123;//”123”

s = Integer.toString(123);//”123”
s = Double.toString(3.14); //”3.14”

Command-line arguments in Java are used to
pass arguments to the main program. If you look at
the Java main method syntax, it accepts String array as
an argument. When we pass command-line arguments,
they are treated as strings and passed to the main function
in the string array argument.

Inheritance
 Inheritance allows a software developer to derive a new

class from an existing one

 The existing class is called the parent class, or superclass,
or base class

 The derived class is called the child class or subclass.

 As the name implies, the child inherits characteristics of
the parent

 That is, the child class inherits the methods and data
defined for the parent class

 To tailor a derived class, the programmer can add new
variables or methods, or can modify the inherited ones

 Software reuse is at the heart of inheritance

 By using existing software components to create new
ones, we capitalize on all the effort that went into the
design, implementation, and testing of the existing
software

 Inheritance relationships often are shown graphically
in a UML class diagram, with an arrow with an open
arrowhead pointing to the parent class

Vehicle

Car

Inheritance should create an is-a relationship, meaning the child is
a more specific version of the parent

Deriving Subclasses
 In Java, we use the reserved word extends to

establish an inheritance relationship

class Car extends Vehicle

{

// class contents

}

Class Hierarchies
 A child class of one parent can be the parent of

another child, forming a class hierarchy

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

Class Hierarchies
 Two children of the same parent are called siblings

 Common features should be put as high in the hierarchy as
is reasonable

 An inherited member is passed continually down the line

 Therefore, a child class inherits from all its ancestor classes

 There is no single class hierarchy that is appropriate for all
situations

class Teacher {
String designation = "Teacher";
String collegeName = "Beginnersbook";
void does(){

System.out.println("Teaching");
}

}

public class PhysicsTeacher extends Teacher{
String mainSubject = "Physics";
public static void main(String args[]){

PhysicsTeacher obj = new PhysicsTeacher();
System.out.println(obj.collegeName);
System.out.println(obj.designation);
System.out.println(obj.mainSubject);
obj.does();

}
}

The protected Modifier
 Visibility modifiers determine which class members

are inherited and which are not

 Variables and methods declared with public
visibility are inherited; those with private visibility
are not

 But public variables violate the principle of
encapsulation

 There is a third visibility modifier that helps in
inheritance situations: protected

The protected Modifier
 The protected modifier allows a member of a base

class to be inherited into a child

 Protected visibility provides more encapsulation than
public visibility does

 However, protected visibility is not as tightly
encapsulated as private visibility

The super Reference
 Constructors are not inherited, even though they have

public visibility

 Yet we often want to use the parent's constructor to set
up the "parent's part" of the object

 The super reference can be used to refer to the parent
class, and often is used to invoke the parent's
constructor

The super Reference
 A child’s constructor is responsible for calling the

parent’s constructor

 The first line of a child’s constructor should use the
super reference to call the parent’s constructor

 The super reference can also be used to reference
other variables and methods defined in the parent’s
class

 If subclass (child class) has the same method as
declared in the parent class, it is known as method
overriding in Java.

 In other words, If a subclass provides the specific
implementation of the method that has been declared
by one of its parent class, it is known as method
overriding.

Usage of Java Method Overriding

 Method overriding is used to provide the specific
implementation of a method which is already provided
by its superclass.

 Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

 The method must have the same name as in the parent
class

 The method must have the same parameter as in the
parent class.

 There must be an IS-A relationship (inheritance).

 //Creating a parent class.
 class Vehicle{
 //defining a method
 void run(){System.out.println("Vehicle is running");}
 }
 //Creating a child class
 class Bike2 extends Vehicle{
 //defining the same method as in the parent class
 void run(){System.out.println("Bike is running safely");}

 public static void main(String args[]){
 Bike2 obj = new Bike2();//creating object
 obj.run();//calling method
 }
 }

class Bank
{
int getRateOfInterest()
{
return 0;
}
}

class SBI extends Bank
{
int getRateOfInterest(){
return 8;
}
}
class ICICI extends Bank
{
int getRateOfInterest(){
return 7;
}
}
class AXIS extends Bank
{
int getRateOfInterest(){
return 9;
}
}
class Test2{
public static void main(String args[]){
SBI s=new SBI();
ICICI i=new ICICI();
AXIS a=new AXIS();
System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());
System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());
System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest());
}
}

No. Method Overloading Method Overriding

1) Method overloading is used to
increase the readability of the
program.

Method overriding is used to provide the
specific implementation of the method
that is already provided by its super
class.

2) Method overloading is
performed within class.

Method overriding occurs in two
classes that have IS-A (inheritance)
relationship.

3) In case of method
overloading, parameter must be
different.

In case of method overriding, parameter
must be same.

4) Method overloading is the
example of compile time
polymorphism.

Method overriding is the example of run
time polymorphism.

5) In java, method overloading
can't be performed by changing
return type of the method
only. Return type can be same
or different in method
overloading. But you must have
to change the parameter.

Return type must be same or
covariant in method overriding.

Multiple Inheritance
 Java supports single inheritance, meaning that a

derived class can have only one parent class

 Multiple inheritance allows a class to be derived from
two or more classes, inheriting the members of all
parents

 Collisions, such as the same variable name in two
parents, have to be resolved

 In most cases, the use of interfaces gives us aspects of
multiple inheritance without the overhead

“Multiple Inheritance” refers to the concept of one class
extending (Or inherits) more than one base class.

Multiple Inheritance is very rarely used in software projects. Using Multiple
inheritance often leads to problems in the hierarchy. This results in unwanted
complexity when further extending the class.

Multilevel Inheritance
 Multilevel inheritance refers to a mechanism in OO

technology where one can inherit from a derived class,
thereby making this derived class the base class for the
new class.

 In the flow diagram C is subclass or child class of B
and B is a child class of A.

class X
{

public void methodX()
{
System.out.println("Class X method");

}
}
class Y extends X
{
public void methodY()
{
System.out.println(“Class Y method");
}
}
class Z extends Y
{

public void methodZ()
{
System.out.println(“Class Z method");

}
public static void main(String args[])
{
Z obj = new Z();
obj.methodX(); //calling grand parent class method
obj.methodY(); //calling parent class method
obj.methodZ(); //calling local method

}
}

The Object Class
 A class called Object is defined in the java.lang

package of the Java standard class library

 All classes are derived from the Object class

 If a class is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the
Object class

 Therefore, the Object class is the ultimate root of all
class hierarchies

 The Object class contains a few useful methods, which
are inherited by all classes

 For example, the toString method is defined in the
Object class

 Every time we have defined toString, we have actually
been overriding an existing definition

 The toString method in the Object class is defined to
return a string that contains the name of the object’s class
together along with some other information

 All objects are guaranteed to have a toString method via
inheritance

 Thus the println method can call toString for any
object that is passed to it

 The equals method of the Object class returns true
if two references are aliases

 We can override equals in any class to define equality
in some more appropriate way

 The String class (as we've seen) defines the equals
method to return true if two String objects contain
the same characters

 Therefore the String class has overridden the
equals method inherited from Object in favor of its
own version

Abstract Classes
 An abstract class is a placeholder in a class hierarchy that

represents a generic concept

 An abstract class cannot be instantiated

 We use the modifier abstract on the class header to
declare a class as abstract:

public abstract class Whatever
{

// contents
}

 An abstract class often contains abstract methods with
no definitions (like an interface does)

 Unlike an interface, the abstract modifier must be
applied to each abstract method

 An abstract class typically contains non-abstract
methods (with bodies), further distinguishing abstract
classes from interfaces

 A class declared as abstract does not need to contain
abstract methods

 The child of an abstract class must override the
abstract methods of the parent, or it too will be
considered abstract

 An abstract method cannot be defined as final
(because it must be overridden) or static (because it
has no definition yet)

 The use of abstract classes is a design decision – it
helps us establish common elements in a class that is
too general to instantiate

//abstract parent class
abstract class Animal{

//abstract method
public abstract void sound();

}
//Dog class extends Animal class
public class Dog extends Animal{

public void sound(){
System.out.println("Woof");

}
public static void main(String args[]){

Animal obj = new Dog();
obj.sound();

}
}

Introduction
 The main feature of OOP is its ability to support the reuse

of code:
 Extending the classes (via inheritance)
 Extending interfaces

 The features in basic form limited to reusing the classes
within a program.

 What if we need to use classes from other programs
without physically copying them into the program under
development ?

 In Java, this is achieved by using what is known as
“packages”, a concept similar to “class libraries” in other
languages.

Packages
 Packages are Java’s way of grouping a number of related

classes and/or interfaces together into a single unit. That
means, packages act as “containers” for classes.

 The benefits of organising classes into packages are:
 The classes contained in the packages of other

programs/applications can be reused.
 In packages classes can be unique compared with classes in other

packages. That two classes in two different packages can have the
same name. If there is a naming clash, then classes can be accessed
with their fully qualified name.

 Classes in packages can be hidden if we don’t want other packages
to access them.

 Packages also provide a way for separating “design” from coding.

Java Foundation Packages
 Java provides a large number of classes grouped into different packages

based on their functionality.
 The six foundation Java packages are:

 java.lang
 Contains classes for primitive types, strings, math functions, threads, and

exception
 java.util

 Contains classes such as vectors, hash tables, date etc.
 java.io

 Stream classes for I/O
 java.awt

 Classes for implementing GUI – windows, buttons, menus etc.
 java.net

 Classes for networking
 java.applet

 Classes for creating and implementing applets

Using System Packages
 The packages are organised in a hierarchical structure. For

example, a package named “java” contains the package
“awt”, which in turn contains various classes required for
implementing GUI (graphical user interface).

Graphics

Font

java

Image

…

awt

lang “java” Package containing
“lang”, “awt”,.. packages;
Can also contain classes.

awt Package containing
classes

Classes containing
methods

Accessing Classes from Packages
 There are two ways of accessing the classes stored in packages:

 Using fully qualified class name
 java.lang.Math.sqrt(x);

 Import package and use class name directly.
 import java.lang.Math
 Math.sqrt(x);

 Selected or all classes in packages can be imported:

 Implicit in all programs: import java.lang.*;
 package statement(s) must appear first

import package.class;
import package.*;

Creating Packages
 Java supports a keyword called “package” for creating user-

defined packages. The package statement must be the first
statement in a Java source file (except comments and white
spaces) followed by one or more classes.

 Package name is “myPackage” and classes are considred as part
of this package; The code is saved in a file called “ClassA.java”
and located in a directory called “myPackage”.

package myPackage;
public class ClassA {

// class body
}
class ClassB {
// class body
}

Creating Sub Packages
 Classes in one ore more source files can be part of the same

packages.

 As packages in Java are organised hierarchically,
sub-packages can be created as follows:
 package myPackage.Math
 package myPackage.secondPakage.thirdPackage

 Store “thirdPackage” in a subdirectory named
“myPackage\secondPackage”. Store “secondPackage” and
“Math” class in a subdirectory “myPackage”.

Accessing a Package
 As indicated earlier, classes in packages can be

accessed using a fully qualified name or using a
short-cut as long as we import a corresponding
package.

 The general form of importing package is:
 import package1[.package2][…].classname
 Example:

 import myPackage.ClassA;
 import myPackage.secondPackage

 All classes/packages from higher-level package can be
imported as follows:
 import myPackage.*;

import letmecalculate.Calculator;
public class Demo{

public static void main(String args[]){
Calculator obj = new Calculator();
System.out.println(obj.add(100, 200));

}
}

package letmecalculate;

public class Calculator {
public int add(int a, int b){

return a+b;
}
public static void main(String args[]){

Calculator obj = new Calculator();
System.out.println(obj.add(10, 20));

}
}

Protection and Packages
 All classes (or interfaces) accessible to all others in

the same package.
 Class declared public in one package is accessible

within another. Non-public class is not
 Members of a class are accessible from a difference

class, as long as they are not private
 protected members of a class in a package are

accessible to subclasses in a different class

Visibility - Revisited
 Public keyword applied to a class, makes it

available/visible everywhere. Applied to a method
or variable, completely visible.

 Private fields or methods for a class only visible
within that class. Private members are not visible
within subclasses, and are not inherited.

 Protected members of a class are visible within the
class, subclasses and also within all classes that are
in the same package as that class.

Visibility Modifiers
Accessible to: public protected Package

(default)

private

Same Class Yes Yes Yes Yes

Class in package Yes Yes Yes No

Subclass in
different package

Yes Yes No No

Non-subclass

different package
Yes No No No

Java Interface
 A Java interface is a collection of constants and

abstract methods
 abstract method: a method header without a method

body; we declare an abstract method using the
modifier abstract

 since all methods in an interface are abstract, the
abstract modifier is usually left off

 Methods in an interface have public visibility by
default

Interface: Syntax

public interface Doable
{

public static final String NAME;

public void doThis();
public int doThat();
public void doThis2 (float value, char ch);
public boolean doTheOther (int num);

}

interface is a reserved word

No method in an
interface has a definition (body)

A semicolon immediately
follows each method header

Implementing an Interface
 A class formally implements an interface by

 stating so in the class header in the implements
clause

 a class can implement multiple interfaces: the
interfaces are listed in the implements clause,
separated by commas

 If a class asserts that it implements an interface, it
must define all methods in the interface or the
compiler will produce errors

Implementing Interfaces
public class Something implements Doable
{

public void doThis ()
{

// whatever
}

public void doThat ()
{

// whatever
}

// etc.
}

implements is a
reserved word

Each method listed
in Doable is

given a definition

public class ManyThings implements Doable, AnotherDoable

<<interface>>
Complexity

+ getComplexity () : int
+ setComplexity (int) : void

Question

+ getQuestion () : String
+ getAnswer () : String
+ answerCorrect (String) : boolean
+ toString() : String

MiniQuiz

+ main(args : String[]) : void

1

2

UML Diagram

Interfaces: Examples from
Java Standard Class Library
 The Java Standard Class library defines many interfaces:

 the Iterator interface contains methods that allow the user to
move through a collection of objects easily
 hasNext(), next(), remove()

 the Comparable interface contains an abstract method called
compareTo, which is used to compare two objects

if (obj1.compareTo(obj2) < 0)
System.out.println(“obj1 is less than obj2”);

Interface Hierarchies
 Inheritance can be applied to interfaces as well as classes
 One interface can be used as the parent of another
 The child interface inherits all abstract methods of the

parent
 A class implementing the child interface must define all

methods from both the parent and child interfaces
 Note that class hierarchies and interface hierarchies are

distinct (they do not overlap)

Introduction
 Errors can be dealt with at place error occurs

 Easy to see if proper error checking implemented
 Harder to read application itself and see how code works

 Exception handling
 Makes clear, robust, fault-tolerant programs
 Java removes error handling code from "main line" of program

 Common failures
 Memory exhaustion
 Out of bounds array subscript
 Division by zero
 Invalid method parameters

Introduction
 Exception handling

 Catch errors before they occur
 Deals with synchronous errors (i.e., divide by zero)
 Does not deal with asynchronous errors

 Disk I/O completions, mouse clicks - use interrupt
processing

 Used when system can recover from error
 Exception handler - recovery procedure
 Error dealt with in different place than where it occurred

 Useful when program cannot recover but must shut
down cleanly

Introduction
 Exception handling

 Should not be used for program control
 Not optimized, can harm program performance

 Improves fault-tolerance
 Easier to write error-processing code
 Specify what type of exceptions are to be caught

 Another way to return control from a function or
block of code

When Exception Handling Should
Be Used

 Error handling used for
 Processing exceptional situations
 Processing exceptions for components that cannot

handle them directly
 Processing exceptions for widely used components

(libraries, classes, methods) that should not process
their own exceptions

 Large projects that require uniform error processing

The Basics of Java Exception Handling

 Exception handling
 Method detects error which it cannot deal with

 Throws an exception

 Exception handler
 Code to catch exception and handle it

 Exception only caught if handler exists
 If exception not caught, block terminates

The Basics of Java Exception Handling
 Format

 Enclose code that may have an error in try block
 Follow with one or more catch blocks

 Each catch block has an exception handler

 If exception occurs and matches parameter in catch
block
 Code in catch block executed

 If no exception thrown
 Exception handling code skipped
 Control resumes after catch blocks

try{
code that may throw

exceptions
}
catch (ExceptionType ref) {

exception handling code
}

The Basics of Java Exception Handling

 Termination model of exception handling
 throw point

 Place where exception occurred
 Control cannot return to throw point

 Block which threw exception expires
 Possible to give information to exception handler

An Exception Handling Example: Divide by Zero
 Example program

 User enters two integers to be divided
 We want to catch division by zero errors
 Exceptions

 Objects derived from class Exception

 Look in Exception classes in java.lang
 Nothing appropriate for divide by zero
 Closest is ArithmeticException
 Extend and create our own exception class

The try Statement
 To handle an exception in a program, the line that

throws the exception is executed within a try block

 A try block is followed by one or more catch clauses

 Each catch clause has an associated exception type and
is called an exception handler

 When an exception occurs, processing continues at the
first catch clause that matches the exception type

The finally Clause
 A try statement can have an optional clause following the

catch clauses, designated by the reserved word finally

 The statements in the finally clause always are executed

 If no exception is generated, the statements in the finally
clause are executed after the statements in the try block
complete

 If an exception is generated, the statements in the finally
clause are executed after the statements in the appropriate
catch clause complete

public class myclass {
public static void main(String[] args) {

try {
int[] myNumbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
System.out.println(myNumbers[10]);

} catch (Exception e) {
System.out.println(“Array Index Out of Bound");

}
}

}

Nested try Statements
A try statement can be inside the block of another try
Each time a try statement is entered, the context of that

exception is pushed on the stack
If an inner try statement does not have a catch, then the

next try statement’s catch handlers are inspected for a
match

If a method call within a try block has try block within it,
then then it is still nested try

class nestedtry {
public static void main(String args[])
{

try {
int a[] = { 1, 2, 3, 4, 5 };
System.out.println(a[5]);
try {

int x = a[2] / 0;
}

catch (ArithmeticException e2) {
System.out.println("division by zero is not possible");

}
}
catch (ArrayIndexOutOfBoundsException e1) {

System.out.println("ArrayIndexOutOfBoundsException");
System.out.println("Element at such index does not exists");

}
}

}

Streams
 To receive information, a program opens a stream

to a “source” and reads the information:

 To send information, a program opens a stream to
a destination (“sink”) and writes the information:

An Example

Streams
 Java provides many stream classes that let you

work with data either
 in the forms that you usually use (characters &

numbers)
 in low level byte form (8 bits at a time)

 Low level byte-oriented abstract classes
 InputStream and Outputstream.

 Higher level character-based abstract classes
 Reader and Writer

Using Streams
 No matter where the information is coming from or

going to and no matter what type of data is being
read or written, the algorithms for reading and
writing data are pretty much always the same

Reading:
open a stream
while more information

read information
close the stream

Writing:
open a stream
while more information

write information
close the stream

java.io.*
 The java.io package contains a collection of stream

classes that support reading/writing from/to streams
 Streams are divided into two class hierarchies based on

the type of data on which they operate.

Most Commonly Used Stream Classes

Characters Bytes

Files FileReader FileInputStream

FileWriter FileOutputStream

Buffering BufferedReader BufferedInputStream

BufferedWriter BufferedOutputStream

Printing PrintWriter PrintStream

Many choices!
Example: InputStream classes
(byte-oriented input)

InputStream

ByteArray
InputStream

File
InputStream

Filter
InputStream

Piped
InputStream

Sequence
InputStream

StringBuffer
InputStream

Object
InputStream

Buffered
InputStream

Checked
InputStream

Inflator
InputStream

PushBack
InputStream

Data
InputStream

ProgressMonitor
InputStream

Digest
InputStream

GZip
InputStream

Zip
InputStream

Input and Output Streams
ByteArrayInputStream

ByteArrayOutputStream
Read or write a byte array.

FileInputStream

FileOutputStream
Read or write data as bytes in a file.

BufferedInputStream

BufferedOutputStream
Buffers the bytes in the underlying input or output
stream.

DataInputStream

DataOutputStream
A filter that allows the binary representation of Java
primitive values (e.g., ‘int’ is 4 bytes) to be read or
written by the specified underlying input or output
stream.

PushbackInputStream “Peek-a-boo” reader allows bytes to be “unread”
from an underlying input stream.

ObjectInputStream

ObjectOutputStream
Read or write binary representations of entire Java
objects, using the underlying input or output
stream.

PipedInputStream

PipedOutputStream
Used in pairs by Java threads to communicate with
each other.

SequenceInputStream Concatenates several input streams.

Reader and Writer Streams
CharArrayReader

CharArrayWriter
Read or write a character array.

FileReader

FileWriter
Read or write characters in a file.

BufferedReader

BufferedWriter
Buffers the bytes in the underlying Reader or Writer
stream.

StringReader

StringWriter
Read characters from a String, or write characters to
a StringBuffer.

PushbackReader “Peek-a-boo” reader allows characters to be
“unread” from an underlying Reader. (Useful for
writing parsers.)

InputStreamReader

OutputStreamReader
Read or write characters in an underlying input or
output stream. (e.g., like making a Reader out of an
InputStream)

PipedReader

PipedWriter
Used in pairs by Java threads for text-based
communication with each other.

LineNumberReader A BufferedReader that also keeps track of the
number of lines read from the underlying Reader.

What are Threads?
 A piece of code that run in concurrent with other

threads.
 Each thread is a ordered sequence of instructions.
 Threads are being extensively used express

concurrency on both single and multiprocessors
machines.

 Programming a task having multiple threads of
control – Multithreading or Multithreaded
Programming.

Java Threads
 Java has built in thread support for Multithreading
 Synchronization
 Thread Scheduling
 Inter-Thread Communication:

 currentThread start setPriority
 yield run getPriority
 sleep stop suspend
 resume

 Java Garbage Collector is a low-priority thread.

Threads
 Threads are lightweight processes as the overhead of

switching between threads is less
 They can be easily spawned
 The Java Virtual Machine spawns a thread when your

program calls the Main Thread

A Multithreaded Program

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

A single threaded program
class ABC
{
….

public void main(..)
{
…
..
}

}

begin

body

end

Scenario
• Consider a simple web server
• The web server listens for request and serves it
• If the web server was not multithreaded, the requests

processing would be in a queue, thus increasing the
response time and also might hang the server if there
was a bad request.

• By implementing in a multithreaded environment, the
web server can serve multiple request simultaneously
thus improving response time

Why do we need threads?
 To enhance parallel processing
 To increase response to the user
 To utilize the idle time of the CPU
 Prioritize your work depending on priority

Web/Internet Applications:
Serving Many Users Simultaneously

Internet
Server

PC client

Local Area Network

Creating threads
 In java threads can be created by extending the Thread

class or implementing the Runnable Interface
 It is more preferred to implement the Runnable

Interface so that we can extend properties from other
classes

 Implement the run() method which is the starting
point for thread execution

Running threads
• Example

class mythread implements Runnable{
public void run(){

System.out.println(“Thread Started”);
}

}

class mainclass {
public static void main(String args[]){

Thread t = new Thread(new mythread()); // This is the way to instantiate a
thread implementing runnable interface

t.start(); // starts the thread by running the run method
}

}

• Calling t.run() does not start a thread, it is just a simple
method call.

• Creating an object does not create a thread, calling start()
method creates the thread.

Synchronization
 Synchronization prevent data corruption
 Synchronization allows only one thread to perform an

operation on a object at a time.
 If multiple threads require an access to an object,

synchronization helps in maintaining consistency.

Shared Resources
 If one thread tries to read the data and other

thread tries to update the same data, it leads to
inconsistent state.

 This can be prevented by synchronising access to
the data.

 Use “Synchronized” method:
 public synchronized void update()
 {

 …

 }

Thread Priority
 In Java, each thread is assigned priority, which

affects the order in which it is scheduled for
running. The threads so far had same default
priority (NORM_PRIORITY) and they are served
using FCFS policy.
 Java allows users to change priority:

 ThreadName.setPriority(intNumber)
 MIN_PRIORITY = 1
 NORM_PRIORITY=5
 MAX_PRIORITY=10

Accessing Shared Resources
 Applications Access to Shared Resources need to

be coordinated.
 Printer (two person jobs cannot be printed at the same

time)
 Simultaneous operations on your bank account
 Can the following operations be done at the same time

on the same account?
 Deposit()
 Withdraw()
 Enquire()

Three threads example
class A extends Thread
{

public void run()
{

for(int i=1;i<=5;i++)
{

System.out.println("\t From Thread A: i= "+i);
}
System.out.println("Exit from A");

}
}

class B extends Thread
{

public void run()
{

for(int j=1;j<=5;j++)
{

System.out.println("\t From Thread B: j= "+j);
}
System.out.println("Exit from B");

}
}

class C extends Thread
{

public void run()
{

for(int k=1;k<=5;k++)
{

System.out.println("\t From Thread C: k= "+k);
}

System.out.println("Exit from C");
}

}

class ThreadTest
{

public static void main(String args[])
{

new A().start();
new B().start();
new C().start();

}
}

Run 1
From ThreadA: i= 1

From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5

Exit from A
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B

Run2
From ThreadA: i= 1

From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B
Exit from A

MEM

CPU

HDD

keyboard

monitor
terminal
console

standard
input stream

standard
output
stream

Streams

How does information
travel across?

MEM

CPU

HDD

keyboard

monitor
terminal
console

standard
input stream

standard
output
stream

file
input

stream
LOAD
READ

file
output
stream
SAVE

WRITE

Streams files

How does information
travel across?

Reading and Writing Text Files
 Text files – files containing simple text

 Created with editors such as notepad, html, etc.

 Simplest way to learn is to extend use of Scanner
 Associate with files instead of System.in

 All input classes, except Scanner, are in java.io
 import java.io.*;

Numerical Input
 2 ways (we’ve learned one, seen the other)

 Use int as example, similar for double

 First way:
 Use nextInt()
int number = scanner.nextInt();

 Second way:
 Use nextLine(), Integer.parseInt()
String input = scanner.nextLine();
int number = Integer.parseInt(input);

Review: Scanner
 The constructor takes an object of type
java.io.InputStream – stores information about
the connection between an input device and the
computer or program
 Example: System.in

 Recall – only associate one instance of Scanner with
System.in in your program
 Otherwise, get bugs

Reading Files
 The same applies for both console input and file input

 We can use a different version of a Scanner that takes a
File instead of System.in

 Everything works the same!

Reading Files
 To read from a disk file, construct a FileReader

 Then, use the FileReader to construct a Scanner object

FileReader rdr = newFileReader("input.txt");

Scanner fin = new Scanner(rdr);

File Class
 java.io.File

 associated with an actual file on hard drive
 used to check file's status

 Constructors
 File(<full path>)
 File(<path>, <filename>)

 Methods
 exists()
 canRead(), canWrite()
 isFile(), isDirectory()

File Class
 java.io.FileReader

Associated with File object
Translates data bytes from File object into a

stream of characters (much like InputStream
vs. InputStreamReader)

 Constructors
 FileReader(<File object>);

 Methods
 read(), readLine()
 close()

Writing to a File
 We will use a PrintWriter object to write to a file

 What if file already exists? Empty file
 Doesn’t exist? Create empty file with that name

 How do we use a PrintWriter object?
 Have we already seen one?

Writing to a File
 The out field of the System class is a PrintWriter object

associated with the console
 We will associate our PrintWriter with a file now

PrintWriter fout = new PrintWriter("output.txt");
fout.println(29.95);
fout.println(new Rectangle(5, 10, 15, 25));

fout.println("Hello, World!");

 This will print the exact same information as with
System.out (except to a file “output.txt”)!

Closing a File
 Only main difference is that we have to close the file

stream when we are done writing

 If we do not, not all output will written

 At the end of output, call close()

fout.close();

File Locations
 When determining a file name, the default is to place

in the same directory as your .class files
 If we want to define other place, use an absolute path

(e.g. c:\My Documents)
in = new
FileReader(“c:\\homework\\input.dat”);

import java.io.*;
public class dupl {

public static void main(String args[]) throws IOException {
FileReader in = null;
FileWriter out = null;

try {
in = new FileReader("input.txt");
out = new FileWriter("output.txt");

int c;
while ((c = in.read()) != -1) {

out.write(c);
}

}finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
}

}
}

}

File Processing
 Storing and manipulating data using files is known

as file processing.
 Reading/Writing of data in a file can be performed

at the level of bytes, characters, or fields
depending on application requirements.

 Java also provides capabilities to read and write
class objects directly. The process of reading and
writing objects is called object serialisation.

C Input/Output Revision
FILE* fp;

fp = fopen(“In.file”, “rw”);
fscanf(fp, ……);
frpintf(fp, …..);
fread(………, fp);
fwrite(……….., fp);

I/O and Data Movement
 The flow of data into a program (input) may come from different

devices such as keyboard, mouse, memory, disk, network, or
another program.

 The flow of data out of a program (output) may go to the screen,
printer, memory, disk, network, another program.

 Both input and output share a certain common property such as
unidirectional movement of data – a sequence of bytes and
characters and support to the sequential access to the data.

Streams
 Java Uses the concept of

Streams to represent the
ordered sequence of data, a
common characteristic shared
by all I/O devices.

 Streams presents a uniform,
easy to use, object oriented
interface between the program
and I/O devices.

 A stream in Java is a path along
which data flows (like a river or
pipe along which water flows).

Stream Types
 The concepts of sending

data from one stream to
another (like a pipe feeding
into another pipe) has
made streams powerful
tool for file processing.

 Connecting streams can
also act as filters.

 Streams are classified into
two basic types:
 Input Steam
 Output Stream

Source Program

Input Streamreads

SourceProgram

Output Stream

writes

Java Stream Classes
 Input/Output related classes are defined in

java.io package.
 Input/Output in Java is defined in terms of

streams.
A stream is a sequence of data, of no particular

length.
 Java classes can be categorised into two groups

based on the data type one which they operate:
 Byte streams
 Character Streams

Streams
Byte Streams Character streams

Operated on 8 bit (1
byte) data.

Operates on 16-bit
(2 byte) unicode
characters.

Input
streams/Output
streams

Readers/ Writers

Classification of Java Stream Classes

Byte Stream
classes

Character Stream
classes

Byte Input Streams

InputStream
ObjectInputStream

SequenceInputStream

ByteArrayInputStream

PipedInputStream

FilterInputStream

PushbackInputStream

DataInputStream BufferedInputStream

Byte Input Streams - operations
public abstract int read() Reads a byte and returns as

a integer 0-255
public int read(byte[] buf,
int offset, int count)

Reads and stores the bytes
in buffer starting at offset.
Count is the maximum read.

public int read(byte[] buf) Same as previous offset=0
and length=buf.length()

public long skip(long count) Skips count bytes.

public int available() Returns the number of bytes
that can be read.

public void close() Closes stream

Byte Input Stream - example
 Count total number of bytes in the file

import java.io.*;

class CountBytes {
public static void main(String[] args)

throws FileNotFoundException, IOException
{

FileInputStream in;
in = new FileInputStream(“InFile.txt”);

int total = 0;
while (in.read() != -1)

total++;
System.out.println(total + “ bytes”);

}
}

What happens if the file did not exist
 JVM throws exception and terminates the program since

there is no exception handler defined.

Exception in thread "main" java.io.FileNotFoundException:
FileIn.txt (No such file or directory)

at java.io.FileInputStream.open(Native Method)
at

java.io.FileInputStream.<init>(FileInputStream.java:64)
at CountBytes.main(CountBytes.java:12)

Byte Output Streams
OutputStream

ObjectOutputStream
SequenceOutputStream

ByteArrayOutputStream

PipedOutputStream

FilterOutputStream

PrintStream

DataOutputStream BufferedOutputStream

Byte Output Streams - operations
public abstract void
write(int b)

Write b as bytes.

public void write(byte[] buf,
int offset, int count)

Write count bytes starting
from offset in buf.

public void write(byte[]
buf)

Same as previous offset=0
and count = buf.length()

public void flush() Flushes the stream.

public void close() Closes stream

Byte Output Stream - example
 Read from standard in and write to standard out

import java.io.*;

class ReadWrite {
public static void main(string[] args)

throws IOException
{

int b;
while ((b = System.in.read()) != -1)
{

System.out.write(b);
}

}

I/O Streams

• A stream is a sequence of bytes that flows from
a source to a destination

• In a program, we read information from an
input stream and write information to an
output stream

• A program can manage multiple streams at a
time

• The java.io package contains many classes
that allow us to define various streams with
specific characteristics

I/O Stream Categories

• The classes in the I/O package divide input and
output streams into other categories

• An I/O stream is either a
– character stream, which deals with text data
– byte stream, which deals with byte data

• An I/O stream is also either a
– data stream, which acts as either a source or

destination
– processing stream, which alters or manages

information in the stream

I/O class hierarchy
o class java.lang.Object

o class java.io.InputStream
o class java.io.ByteArrayInputStream
o class java.io.FileInputStream
o class java.io.FilterInputStream

o class java.io.OutputStream
o class java.io.ByteArrayOutputStream
o class java.io.FileOutputStream
o class java.io.FilterOutputStream

o class java.io.Reader
o class java.io.BufferedReader
o …
o class java.io.InputStreamReader

o class java.io.Writer
o class java.io.BufferedWriter
o …
o class java.io.OutputStreamWriter

Sources of data streams

• There are three standard I/O streams:
– standard input – defined by System.in
– standard output – defined by System.out
– standard error – defined by System.err

• We use System.out when we execute
println statements

• System.in is declared to be a generic
InputStream reference, and therefore usually
must be mapped to a more useful stream with
specific characteristics

• FileInputStream and FileReader are
classes whose constructors open a file for
reading

Processing streams

• Processing classes have constructors that take
InputSteams as input and produce
InputStreams with added functionality

• BufferedReader, and BufferedWriter allow you
to write bigger chunks of text to a stream.
– Buffering is a way of combining multiple reads or

writes into a single action. It is a good idea when
working with text.

– Examples: readLine() in BufferedReader and
newLine() in BufferedWriter

IOExceptions

• The following exception classes are defined in
the java.io package:
CharConversionException
EOFException
FileNotFoundException
InterruptedIOException
InvalidClassException
InvalidObjectException
NotActiveException
NotSerializableException
ObjectStreamException
OptionalDataException
StreamCorruptedException
SyncFailedException
UnsupportedEncodingException
UTFDataFormatException
WriteAbortedException

 The streaming interface to I/O in Java provides a clean
abstraction for a complex and often cumbersome task.

 The composition of the filtered stream classes allows
you to dynamically build the custom streaming
interface to suit your data transfer requirements.

 Java programs written to adhere to the abstract, high-
level InputStream, OutputStream, Reader, and Writer
classes will function properly in the future even when
new and improved concrete stream classes are
invented.

 This model works very well when we switch from a file
system-based set of streams to the network and socket
streams.

 Finally, serialization of objects is expected to play an
increasingly important role in Java programming in
the future.

 Java’s serialization I/O classes provide a portable
solution to this sometimes tricky task programming.

Applets

• There are two types of Java programs:
- Applications and Applets

• We will focus on applets.
- an applet is a Java program that can be viewed on a Web
browser that supports the Java language.

• The easiest way to explain what an applet is and how it
works is by example.

Applet Example

• The applet Example:
import java.awt.*;
import java.applet.*;
public class appl extends Applet

{
public void paint(Graphics g)

{
g.drawOval(40,40,120,150);
g.drawOval(57,75,30,20);
g.drawOval(110,75,30,20);
g.fillOval(68,81,10,10);
g.fillOval(121,81,10,10);
g.drawOval(85,100,30,30);
g.fillArc(60,125,80,40,180,180);
g.drawOval(25,92,15,30);
g.drawOval(160,92,15,30);
}

}

appl Applet

• After compiling the code, the class file is called by an
HTML document in a web browser or applet runner
(appletviewer) and the output will be displayed on the
screen.

• The HTML code (stored in file appl.html) to call an applet
is:

<applet code = “filename.class”
width = “width of applet in pixels”
height = “height of applet in pixels”>

</applet>
• applet runner:

- appletviewer appl.html

Applet Example

• Example (appl.html):

/*<applet code="appl.class"Width=250
height=200></applet>*/

Life Cycle of an Applet

• An Applet executes within an environment provided by a
Web browser or a tool such as the applet viewer.

• It does not have a main() method
• There are four methods that are called during the life

cycle of an applet:
init(),
start(),
stop(),
destroy().

Life Cycle of an Applet

• init() method is called only when the applet begins execution.
It is common to place code here that needs to be executed only
once, such as reading parameters that are defined in the HTML
file.

• start() method is executed after the init() method completes
execution. In addition, this method is called by the applet
viewer or Web browser to resume execution of the applet.

• stop() method is called by the applet viewer or Web browser to
suspend execution of an applet.
- the start() and stop() methods may be called multiple times

during the life cycle of the applet.

import Statements

• The first two lines of the program are:

import java.applet.*;

import.java.awt.*;

• These two lines “import” or let the Java compiler know

that we want to use classes that are in the packages
java. applet and java. awt.
- The java.applet package:

contains definitions for the applet class
- The java.awt package:

contains classes for displaying graphics

import Statements

• The “*” acts as a wildcard that will import all of the
classes in the package

• Difference between this “*” and the one used at a
command
prompt.
- You can not use it to indicate partial names such as L* to

import all the classes that start with L.

• The “*” will import all the public classes in a package but
does not import the subpackages.

import Statements

- To import all classes in a package hierarchy, you must
import each level (or subpackage) explicitly.

import java. awt.*; does not import the “peer” subpackage.
To import the “peer” subpackage you must do it explicitly.
Example:

import java.awt.event.*;
import.java.awt.image.*;

import Statement Syntax

• The form of an import statement is as follows:
- import packageName .*;

or
import packageName. className ;
Examples: import java.applet.Applet;

import java.awt.Graphics;

• import statements must appear before any of the names
defined in the import are used.

• It is a strong recommendation that all imports appear at
the beginning of your program.

drawString() method

• The drawString() method belongs to the Graphics class
• g is a Graphics object and we want it to execute it’s own

drawString() method.
• We also pass it what we want to draw on the screen and

where we want the graph to be drawn.
• The drawString() method is defined in the Graphics as

follows:
Public void drawString(String s, int x, int y)

{
Code to draw s on the screen at location x, y

}

Graphics

Graphics

• The java.awt package contains all the necessary classes
you need to create graphical user interfaces (GUIs).

• Most of the graphics operations in Java are methods
defined in the Graphics class.

• You don’t have to create an instance of the Graphics
class because in the applet’s paint() method, a
Graphics object is provided for you. By drawing in that
object, you draw onto your applet which appears on the
screen.

• The Graphics class is part of the java. awt package, so
make sure you import it into your Java code.
- import java. awt. Graphics;

Lines

• To draw a line onto the screen, use the drawLine()
method:
- void drawLine(int x1, int y1, int x2, int y2);
- This draws a line from the point with coordinates (x1, y1) to the

point with coordinates (x2, y2).
- Example:

import java. awt. Graphics;
public class MyLine extends java. applet. Applet {

public void paint(Graphics g) {
g. drawLine(25,25, 75,75);

}
}

- There is no way to change the line thickness in Java.
So how do we make thicker lines?

Rectangles

• To draw a rectangle on the screen, use the drawRect()
method:
- void drawRect(int x, int y, int width, int height)
- This draws an outline of a rectangle with the top left corner of the

rectangle having the point (x, y). The size of the rectangle is
governed by the width and height arguments.

• To fill in the rectangle we would use the method fillRect().
This works in the same way as drawRect() but fills in the
rectangle with the current drawing color.

• To change the current drawing color we use the method:
- void setColor(Color c)
- The drawing color stays fixed until it is changed by another call to

the setColor() method.

The Color Class
• This class contains 13 constant values that can be used:

- black, blue, cyan, darkGray, Gray, green, lightGray, magenta,
orange, pink, red, white, yellow

• To address them we have to reference them through the
Color class
- eg. Color. black
- Too set the current color to blue:

g. setColor(Color. blue)

• Colors in Java are described by the RGB (Red, Green,
Blue) model.
- This model specifies the amount of red, green, and blue in a

color.
- The intensity of each component is measured as an integer

between
0 and 255, with 0 representing no light.

(0,0,0) is black
(128,128,128) is medium gray

The Color Class

• To declare a new color in Java, use the “new” operator
- Color myColor = new Color(255, 0, 128);
- We now have a new color and since we know it is an object of the

Color class we can use it directly
g. setColor(myColor);

- You can also define the color “on the fly” or in line with the
setColor() method

g. setColor(new Color(255,0,128));

The Font Class
• There are five basic fonts in Java

- SanSerif (Helvetica), Serif (Times Roman), Monospaced (Courier),
Dialog, DialogInput

• There are some constant values associated with the Font
class as well.
- Font.BOLD, Font.PLAIN, Font.ITALIC

• Create a Font object by using the “new” operator
- Font myFont = new Font(“Helvetica”, Font.BOLD, 12);

- After creating a font, you have to set it before it can be used:
g.setFont(myFont);

- You can also do this in line with the setFont() method
g.setFont(new Font(“Helvetica”, Font.BOLD, 12));

• You can also combine styles by adding them together, for
example

Font myFont = new Font(“Helvetica”, Font.BOLD+ Font.ITALIC, 12)

Java Applet
Applet is a special type of program that is embedded in the webpage to generate
the dynamic content. It runs inside the browser and works at client side.

Advantage of Applet
There are many advantages of applet. They are as follows:
It works at client side so less response time.
Secured
It can be executed by browsers running under many plateforms, including
Linux, Windows, Mac Os etc.

Lifecycle of Java Applet
Applet is initialized.
Applet is started.
Applet is painted.
Applet is stopped.
Applet is destroyed.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited. It
provides 4 life cycle methods of applet.
public void init(): is used to initialized the Applet. It is invoked only once.
public void start(): is invoked after the init() method or browser is
maximized. It is used to start the Applet.
public void stop(): is used to stop the Applet. It is invoked when Applet is
stop or browser is minimized.
public void destroy(): is used to destroy the Applet. It is invoked only once.

java.awt.Component class

The Component class provides 1 life cycle method of applet.
public void paint(Graphics g): is used to paint the Applet. It provides
Graphics class object that can be used for drawing oval, rectangle, arc etc.

Java Applet
Applet is a special type of program that is embedded in the webpage to generate
the dynamic content. It runs inside the browser and works at client side.

Advantage of Applet
There are many advantages of applet. They are as follows:
It works at client side so less response time.
Secured
It can be executed by browsers running under many platforms, including Linux,
Windows, Mac Os etc.

Lifecycle of Java Applet
Applet is initialized.
Applet is started.
Applet is painted.
Applet is stopped.
Applet is destroyed.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited. It
provides 4 life cycle methods of applet.
public void init(): is used to initialized the Applet. It is invoked only once.
public void start(): is invoked after the init() method or browser is
maximized. It is used to start the Applet.
public void stop(): is used to stop the Applet. It is invoked when Applet is
stop or browser is minimized.
public void destroy(): is used to destroy the Applet. It is invoked only once.

java.awt.Component class

The Component class provides 1 life cycle method of applet.
public void paint(Graphics g): is used to paint the Applet. It provides
Graphics class object that can be used for drawing oval, rectangle, arc etc.

Uses

Java applets are used to provide interactive features to
web applications and can be executed by browsers for many platforms.
They are small, portable Java programs embedded in HTML pages and can
run automatically when the pages are viewed.

AWT (Abstract Windowing Toolkit)

The AWT is roughly broken into three categories
Components

Layout Managers

Graphics

AWT Class Hierarchy

PanelButton

Checkbox

Choice

Label

List

Component

Container FrameWindow

TextArea

TextFieldTextComponent

Component

Component is the superclass of most of the displayable
classes defined within the AWT. Note: it is abstract.
MenuComponent is another class which is similar to
Component except it is the superclass for all GUI items
which can be displayed within a drop-down menu.
The Component class defines data and methods which
are relevant to all Components

setBounds
setSize
setLocation
setFont
setEnabled
setVisible
setForeground -- colour
setBackground -- colour

Container

Container is a subclass of Component. (ie. All containers
are themselves, Components)
Containers contain components
For a component to be placed on the screen, it must be
placed within a Container
The Container class defined all the data and methods
necessary for managing groups of Components

add
getComponent
getMaximumSize
getMinimumSize
getPreferredSize
remove
removeAll

Windows and Frames

The Window class defines a top-level Window with no
Borders or Menu bar.

Usually used for application splash screens

• Frame defines a top-level Window with Borders and a
Menu Bar
• Frames are more commonly used than Windows

Once defined, a Frame is a Container which can contain
Components

Frame aFrame = new Frame(Hello World);
aFrame.setSize(100,100);
aFrame.setLocation(10,10);
aFrame.setVisible(true);

Panels

When writing a GUI application, the GUI portion can
become quite complex.
To manage the complexity, GUIs are broken down into
groups of components. Each group generally provides a
unit of functionality.
A Panel is a rectangular Container whose sole purpose is
to hold and manage components within a GUI.

Panel aPanel = new Panel();
aPanel.add(new Button("Ok"));
aPanel.add(new Button("Cancel"));

Frame aFrame = new Frame("Button Test");
aFrame.setSize(100,100);
aFrame.setLocation(10,10);

aFrame.add(aPanel);

Buttons

This class represents a push-button which displays some
specified text.
When a button is pressed, it notifies its Listeners. (More
about Listeners in the next chapter).
To be a Listener for a button, an object must implement the
ActionListener Interface.

Panel aPanel = new Panel();
Button okButton = new Button("Ok");
Button cancelButton = new Button("Cancel");

aPanel.add(okButton));
aPanel.add(cancelButton));

okButton.addActionListener(controller2);
cancelButton.addActionListener(controller1);

Labels

This class is a Component which displays a single line of
text.
Labels are read-only. That is, the user cannot click on a
label to edit the text it displays.
Text can be aligned within the label

Label aLabel = new Label("Enter password:");
aLabel.setAlignment(Label.RIGHT);

aPanel.add(aLabel);

List

This class is a Component which displays a list of Strings.
The list is scrollable, if necessary.
Sometimes called Listbox in other languages.
Lists can be set up to allow single or multiple selections.
The list will return an array indicating which Strings are
selected
List aList = new List();

aList.add("Calgary");
aList.add("Edmonton");
aList.add("Regina");
aList.add("Vancouver");

aList.setMultipleMode(true);

Checkbox

This class represents a GUI checkbox with a textual label.
The Checkbox maintains a boolean state indicating whether
it is checked or not.
If a Checkbox is added to a CheckBoxGroup, it will behave
like a radio button.

Checkbox creamCheckbox = new CheckBox("Cream");
Checkbox sugarCheckbox = new CheckBox("Sugar");
[]
if (creamCheckbox.getState())
{

coffee.addCream();
}

Choice

This class represents a dropdown list of Strings.
Similar to a list in terms of functionality, but displayed
differently.
Only one item from the list can be selected at one time and
the currently selected element is displayed.

Choice aChoice = new Choice();
aChoice.add("Calgary");
aChoice.add("Edmonton");
aChoice.add("Alert Bay");
[]

String selectedDestination= aChoice.getSelectedItem();

TextField

This class displays a single line of optionally editable text.
This class inherits several methods from TextComponent.
This is one of the most commonly used Components in the
AWT

TextField emailTextField = new TextField();
TextField passwordTextField = new TextField();
passwordTextField.setEchoChar("*");
[…]

String userEmail = emailTextField.getText();
String userpassword = passwordTextField.getText();

TextArea

This class displays multiple lines of optionally editable text.
This class inherits several methods from TextComponent.
TextArea also provides the methods: appendText(),
insertText() and replaceText()

// 5 rows, 80 columns
TextArea fullAddressTextArea = new TextArea(5, 80);
[]

String userFullAddress= fullAddressTextArea.getText();

Layout Managers

Since the Component class defines the setSize() and
setLocation() methods, all Components can be sized and
positioned with those methods.
Problem: the parameters provided to those methods are
defined in terms of pixels. Pixel sizes may be different
(depending on the platform) so the use of those methods
tends to produce GUIs which will not display properly on
all platforms.
Solution: Layout Managers. Layout managers are
assigned to Containers. When a Component is added to
a Container, its Layout Manager is consulted in order to
determine the size and placement of the Component.
NOTE: If you use a Layout Manager, you can no longer
change the size and location of a Component through the
setSize and setLocation methods.

Layout Managers (cont)

There are several different LayoutManagers, each of which
sizes and positions its Components based on an algorithm:

FlowLayout

BorderLayout

GridLayout

For Windows and Frames, the default LayoutManager is
BorderLayout. For Panels, the default LayoutManager is
FlowLayout.

Flow Layout

The algorithm used by the FlowLayout is to lay out
Components like words on a page: Left to right, top to
bottom.
It fits as many Components into a given row before moving
to the next row.

Panel aPanel = new Panel();

aPanel.add(new Button("Ok"));

aPanel.add(new Button("Add"));

aPanel.add(new Button("Delete"));

aPanel.add(new Button("Cancel"));

Border Layout

The BorderLayout Manager breaks the Container up into 5
regions (North, South, East, West, and Center).
When Components are added, their region is also
specified:

Frame aFrame = new Frame();

aFrame.add("North", new Button("Ok"));

aFrame.add("South", new Button("Add"));

aFrame.add("East", new Button("Delete"));

aFrame.add("West", new Button("Cancel"));

aFrame.add("Center", new Button("Recalculate"));

Border Layout (cont)

The regions of the BorderLayout are defined as follows:

Center

North

South

West East

Grid Layout

The GridLayout class divides the region into a grid of
equally sized rows and columns.
Components are added left-to-right, top-to-bottom.
The number of rows and columns is specified in the
constructor for the LayoutManager.

Panel aPanel = new Panel();

GridLayout theLayout = new GridLayout(2,2);

aPanel.setLayout(theLayout);

aPanel.add(new Button("Ok"));

aPanel.add(new Button("Add"));

aPanel.add(new Button("Delete"));

aPanel.add(new Button("Cancel"));

Graphics

It is possible to draw lines and various shapes within a
Panel under the AWT.
Each Component contains a Graphics object which defines
a Graphics Context which can be obtained by a call to
getGraphics().
Common methods used in Graphics include:

drawLine
drawOval
drawPolygon
drawPolyLine
drawRect
drawRoundRect
drawString
draw3DRect
fill3DRect
fillArc

 fillOval
 fillPolygon
 fillRect
 fillRoundRect
 setColor
 setFont
 setPaintMode
 drawImage

Using AWT Components
 Component

 Canvas
 Scrollbar
 Button
 Checkbox
 Label
 List
 Choice
 TextComponent

 TextArea
 TextField

 Component
 Container

 Panel
 Window

 Dialog
 FileDialog

 Frame

 MenuComponent
 MenuItem

 Menu

Frame
import java.awt.*;

public class TestFrame extends Frame {
public TestFrame(String title){

super(title);
}
public static void main(String[] args){

Frame f = new TestFrame("TestFrame");
f.setSize(400,400);
f.setLocation(100,100);
f.show();

}
}

How to Use Buttons?
import java.awt.*;
public class button {
public static void main(String[] args) {

Frame f=new Frame("Button Example");
Button b=new Button("Click Here");
b.setBounds(50,100,80,30);
f.add(b);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
}

How to Use Labels?
import java.awt.event.*;
import java.awt.*;
import javax.swing.*;
class text extends JFrame {

static JFrame f;
static JLabel l;
text()
{
}
public static void main(String[] args)
{

f = new JFrame("label");
l = new JLabel();
l.setText("label text");
JPanel p = new JPanel();
p.add(l);
f.add(p);
f.setSize(300, 300);
f.show();

}
}

How to Use Checkboxes?
import javax.swing.*;
public class checkbox
{

checkbox(){
JFrame f= new JFrame("CheckBox Example");
JCheckBox checkBox1 = new JCheckBox("C++");
checkBox1.setBounds(100,100, 50,50);
JCheckBox checkBox2 = new JCheckBox("Java", true);
checkBox2.setBounds(100,150, 50,50);
f.add(checkBox1);
f.add(checkBox2);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
public static void main(String args[])

{
new checkbox();
}

}

How to Use Choices?
import java.awt.*;
import javax.swing.*;
class choice {

static Choice c;
static JFrame f;
choice()
{
}
public static void main(String args[])
{

f = new JFrame("choice");
JPanel p = new JPanel();
c = new Choice();
c.add("Andrew");
c.add("Arnab");
c.add("Ankit");
p.add(c);
f.add(p);
f.show();
f.setSize(300, 300);

}
}

How to Use TextArea
import java.awt.*;
public class TextAreaExample
{

TextAreaExample(){
Frame f= new Frame();

TextArea area=new TextArea("Welcome");
area.setBounds(10,30, 300,300);
f.add(area);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
public static void main(String args[])
{

new TextAreaExample();
}
}

How to Use TextField
import javax.swing.*;
class TextFieldExample
{
public static void main(String args[])

{
JFrame f= new JFrame("TextField Example");
JTextField t1,t2;
t1=new JTextField("Welcome");
t1.setBounds(50,100, 200,30);
t2=new JTextField("AWT Components");
t2.setBounds(50,150, 200,30);
f.add(t1); f.add(t2);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);
}
}

How to Use Lists?
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class ListEx1
{
String [] seasons;
Frame jf;
List list;
Label label1;
ListEx1()
{
jf= new Frame("List");
list= new List(7);
label1 = new Label("Select your favorite sports from the list :");
list.add("Badminton");
list.add("Hockey");
list.add("Tennis");
list.add("Football");
list.add("Cricket");

list.add("Formula One");
list.add("Rugby");
jf.add(label1);
jf.add(list);
jf.setLayout(new FlowLayout());
jf.setSize(260,220);
jf.setVisible(true);
}
public static void main(String... ar)
{
new ListEx1();
}
}

How to Use Menus?

375

import javax.swing.*;
class MenuExample
{

JMenu menu, submenu;
JMenuItem i1, i2, i3, i4, i5;
MenuExample(){
JFrame f= new JFrame("Menu and MenuItem Example");
JMenuBar mb=new JMenuBar();
menu=new JMenu("Menu");
submenu=new JMenu("Sub Menu");
i1=new JMenuItem("Item 1");
i2=new JMenuItem("Item 2");
i3=new JMenuItem("Item 3");
i4=new JMenuItem("Item 4");
i5=new JMenuItem("Item 5");
menu.add(i1); menu.add(i2); menu.add(i3);
submenu.add(i4); submenu.add(i5);

menu.add(submenu);
mb.add(menu);
f.setJMenuBar(mb);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
public static void main(String args[])
{
new MenuExample();
}
}

Event Handling
 With event-driven programming, events are detected

by a program and handled appropriately
 Events: moving the mouse

clicking the button
pressing a key

sliding the scrollbar thumb
choosing an item from a menu

Three Steps of Event Handling
1 Prepare to accept events

import package java.awt.event
2 Start listening for events

include appropriate methods
3 Respond to events

implement appropriate abstract method

1. Prepare to accept events
 Import package java.awt.event
 Applet manifests its desire to accept events by

promising to “implement” certain methods
 Example:

“ActionListener” for Button events
“AdjustmentListener”

for Scrollbar events

2. Start listening for events
 To make the applet “listen” to a particular event,

include the appropriate “addxxxListener”.
 Examples:

addActionListener(this)
shows that the applet is interested in
listening to events generated by the
pushing of a certain button.

2. Start listening for events (cont)
 Example

addAdjustmentListener(this)
shows that the applet is interested in
listening to events generated by the
sliding of a certain scroll bar thumb.

 “this” refers to the applet itself - “me” in English

3. Respond to events
 The appropriate abstract methods are implemented.
 Example:

actionPerformed() is automatically
called whenever the user clicks the
button.
Thus, implement actionPerformed() to
respond to the button event.

3. Respond to events (cont)
 Example:

adjustmentValueChanged() is
automatically invoked whenever the user
slides the scroll bar thumb.

So adjustmentValueChanged() needs to be
implemented.

 In actionPerformed(ActionEvent evt), ActionEvent is a
class in java.awt.event.

north

center

sout
h leftMsg rightMsgcenterValue

ranger

statement

pan2

pan3pan1

StatBar

Event handling
 For the user to interact with a GUI, the underlying

operating system must support event handling.
1) operating systems constantly monitor events such as

keystrokes, mouse clicks, voice command, etc.
2) operating systems sort out these events and report

them to the appropriate application programs
3) each application program then decides what to do in

response to these events

Events
 An event is an object that describes a state change

in a source.
 It can be generated as a consequence of a person

interacting with the elements in a graphical user
interface.

 Some of the activities that cause events to be
generated are pressing a button, entering a
character via the keyboard, selecting an item in a
list, and clicking the mouse.

 Events may also occur that are not directly caused
by interactions with a user interface.

 For example, an event may be generated when a
timer expires, a counter exceeds a value, a software
or hardware failure occurs, or an operation is
completed.

 Events can be defined as needed and appropriate
by application.

Event sources
 A source is an object that generates an event.
 This occurs when the internal state of that object changes in some way.
 Sources may generate more than one type of event.
 A source must register listeners in order for the listeners to receive

notifications about a specific type of event.
 Each type of event has its own registration method.
 General form is:

public void addTypeListener(TypeListener el)
Here, Type is the name of the event and el is a reference to the event
listener.

 For example,
1. The method that registers a keyboard event listener is called

addKeyListener().
2. The method that registers a mouse motion listener is called

addMouseMotionListener().

 When an event occurs, all registered listeners are
notified and receive a copy of the event object. This
is known as multicasting the event.

 In all cases, notifications are sent only to listeners
that register to receive them.

 Some sources may allow only one listener to
register. The general form is:
public void addTypeListener(TypeListener el)
throws java.util.TooManyListenersException
Here Type is the name of the event and el is a
reference to the event listener.

 When such an event occurs, the registered listener
is notified. This is known as unicasting the event.

 A source must also provide a method that allows a
listener to unregister an interest in a specific type of
event.

 The general form is:
public void removeTypeListener(TypeListener el)
Here, Type is the name of the event and el is a
reference to the event listener.

 For example, to remove a keyboard listener, you
would call removeKeyListener().

 The methods that add or remove listeners are
provided by the source that generates events.

 For example, the Component class provides
methods to add and remove keyboard and mouse
event listeners.

Event classes
 The Event classes that represent events are at the core of

Java's event handling mechanism.
 Super class of the Java event class hierarchy is

EventObject, which is in java.util. for all events.
 Constructor is :

EventObject(Object src)
Here, src is the object that generates this event.

 EventObject contains two methods: getSource() and
toString().

 1. The getSource() method returns the source of the
event. General form is : Object getSource()

 2. The toString() returns the string equivalent of the
event.

 EventObject is a superclass of all events.
 AWTEvent is a superclass of all AWT events that are

handled by the delegation event model.
 The package java.awt.event defines several types of

events that are generated by various user interface
elements.

Event Classes in java.awt.event
 ActionEvent: Generated when a button is pressed, a list

item is double clicked, or a menu item is selected.
 AdjustmentEvent: Generated when a scroll bar is

manipulated.
 ComponentEvent: Generated when a component is hidden,

moved, resized, or becomes visible.
 ContainerEvent: Generated when a component is added to

or removed from a container.
 FocusEvent: Generated when a component gains or loses

keyboard focus.

 InputEvent: Abstract super class for all component input
event classes.

 ItemEvent: Generated when a check box or list item is
clicked; also

 occurs when a choice selection is made or a checkable
menu item is selected or deselected.

 KeyEvent: Generated when input is received from the
keyboard.

 MouseEvent: Generated when the mouse is dragged,
moved, clicked, pressed, or released; also generated when
the mouse enters or exits a component.

 TextEvent: Generated when the value of a text area or text
field is changed.

 WindowEvent: Generated when a window is activated,
closed, deactivated, deiconified, iconified, opened, or quit.

Event Listeners
 A listener is an object that is notified when an event occurs.
 Event has two major requirements.

1. It must have been registered with one or more sources to
receive notifications about specific types of events.

2. It must implement methods to receive and process these
notifications.

 The methods that receive and process events are defined in a set of
interfaces found in java.awt.event.

 For example, the MouseMotionListener interface defines two
methods to receive notifications when the mouse is dragged or moved.

 Any object may receive and process one or both of these events if it
provides an implementation of this interface.

Delegation event model
 The modern approach to handling events is based on the delegation

event model, which defines standard and consistent mechanisms to
generate and process events.

 Its concept is quite simple: a source generates an event and sends it to
one or more listeners.

 In this scheme, the listener simply waits until it receives an event.
 Once received, the listener processes the event and then returns.
 The advantage of this design is that the application logic that processes

events is cleanly separated from the user interface logic that generates
those events.

 A user interface element is able to "delegate“ the processing of an event
to a separate piece of code.

 In the delegation event model, listeners must register with a source in
order to receive an event notification. This provides an important
benefit: notifications are sent only to listeners that want to receive
them.

 This is a more efficient way to handle events than the design used by
the old Java 1.0 approach. Previously, an event was propagated up the
containment hierarchy until it was handled by a component.

 This required components to receive events that they did not process,
and it wasted valuable time. The delegation event model eliminates
this overhead.
Note

 Java also allows you to process events without using the delegation
event model.

 This can be done by extending an AWT component.

Handling mouse events
 mouse events can be handled by implementing the

MouseListener and the MouseMotionListener
interfaces.

 MouseListener Interface defines five methods. The
general forms of these methods are:

1. void mouseClicked(MouseEvent me)
2. void mouseEntered(MouseEvent me)
3. void mouseExited(MouseEvent me)
4. void mousePressed(MouseEvent me)
5. void mouseReleased(MouseEvent me)

 MouseMotionListener Interface. This interface defines
two methods. Their general forms are :

1. void mouseDragged(MouseEvent me)
2. void mouseMoved(MouseEvent me)

Handling keyboard events
 Keyboard events, can be handled by implementing the KeyListener

interface.
 KeyListner interface defines three methods. The general forms of

these methods are :
1. void keyPressed(KeyEvent ke)
2. void keyReleased(KeyEvent ke)
3. void keyTyped(KeyEvent ke)

 To implement keyboard events implementation to the above
methods is needed.

InetAddress Class
 The Inetaddress class provides you with a limited interface

to DNS for doing both forward and reverse internet address
lookups
 An InetAddress class method corresponds to a DNS request

InetAddress Class

 No public constructor
 Three static methods:

 InetAddress getByName(String)
 Static method used to retrieve the address for the host name

passed as the parameter.

 InetAddress [] getAllByName(String)
 Static method used to retrieve all the addresses for the host

name passed as a parameter.

 InetAddress getLocalHost()
 Static method used to retrieve the address for the current, or

local, host.

InetAddress Class

 Three additional “getter” methods
 String getHostName()

 Returns the host name.

 byte[] getAddress()
 Returns the IP address.

 String getHostAddress()
 Returns the IP address as a string.

InetAddress Examples

try

{ InetAddress fullname = netAddress.getByName(“bigyellowcat.cs.binghamton.edu");

InetAddress alias = InetAddress.getByName(“bigyellowcat");

InetAddress octets = InetAddress.getByName(“128.226.121.44");

if (fullname.equals(alias) && fullname.equals(octets))

// All is right with the world! }

catch (UnknownHostException e)

{ // Exception handling here. }

TCP Sockets
 Once a TCP socket connection is made, a virtual stream is

in place. Java’s IO model is that of a stream, therefore the
models are consistent; all you need to do connect a TCP
socket to a stream and read and write the streams as
normal

Socket Class - TCP Client sockets

 Socket(String ip, int port)
 Creates a streaming socket and binds it to the host and port specified

as parameters.

 Socket(String ip, int port, boolean TCPorUDP)
 Creates a socket and binds it to the host and port specified as

parameters. The last parameter is used to indicate whether the socket
should be a stream or datagram socket.

 Socket(InetAddress ia, int port)
 Creates a streaming socket connected to the specified host and port.

 Socket(InetAddress ia, int port, boolean TCPorUDP)
 Creates a socket connected to the specified host and port. The last

parameter specifies whether the socket should be a stream or
datagram socket.

Client Sockets
 InetAddress getInetAddress()

 Returns an InetAddress object representing the host for this
socket.

 Int getPort()
 . Returns the port number on the remote host for this socket

 Int getLocalPort()
 Returns the port number on the local host for this socket.

 InputStream getInputStream()
 Returns an input stream for the socket.

 OutputStream getOutputStream()
 Returns an output stream for the socket.

 Close()
 Closes the socket.

 SetSocketImplFactory (SocketImplFactory)
 Sets the socket factory that will be used to create all sockets.

Reading and Writing
try

{

Socket socket = new Socket("somehost.somewhere.com", -1);

// Always a good idea to buffer the stream to mitigate blocking.

PrintStream out = new PrintStream(new

BufferedOutputStream(socket.getOutputStream()));

out.println("Are you listening?");

DataInputStream in = new DataInputStream(new

BufferedInputStream(socket.getInputStream()));

in.readLine();

// ...

// Don't forget to close the socket!

socket.close()

}

catch (Exception e)

// Exception handling logic.

UDP Sockets
 Since UDP is a connectionless protocol; there is no virtual

stream between the hosts so streams are not used for IO.
 UDP applications are not thought of in terms of clients and

servers, but rather in terms of senders and receivers.
 For conversational applications both ends (sender and receiver) will

be changing states from sender to receiver and back again
 Many UDP based applications are simple send a request then

receive the data (sender’s perspective), like a DNS request. The
receiver’s perspective is to ‘listen’ for a request, send the response,
listen for more requests.

DatagramPacket Class
 UDP sockets send and receive Datagrams
 Constructors: two for receiving, four for sending

 DatagramPacket(byte[] buff , int len)
 Constructs a DatagramPacket for receiving packets of length len.

 DatagramPacket(byte[] buf, int off, int len)
 Constructs a DatagramPacket for receiving packets of length len, specifying

an offset of off bytes into the buffer.

 DatagramPacket((byte[] buf, int len, InetAddress addr, int port)
 Constructs a datagram packet for sending packets of length len to the

specified port number on the specified host.

 DatagramPacker(byte[] buf, int off, int len, InetAddress addr, int port)
 Constructs a datagram packet for sending packets of length len with offset

off to the specified port number on the specified host.

 DatagramPacket(byte[] buf, int off, int len, SocketAddress addr)
 Constructs a datagram packet for sending packets of length len with offset

off to the specified port number on the specified host.

DatagramPacket Class

 DatagramPacket(byte[] buf, int len, SocketAddress addr)
 Constructs a datagram packet for sending packets of length len to

the specified port number on the specified host.

Getter methods
getAddress(
)
getData()
getLength()
getOffset()
getPort()
getSocketAd
dress()

Setter methods
setAddress(InetAddress
iaddr)
setData(byte[] buf)
setData(byte[] buf, int offset,
int length)
setLength(int len)
setPort(int port)
setSocketAddress(SocketAd
dress saddr)

DatagramSocket Class – UDP Sockets

 Constructors
 DatagramSocket()

 Constructs a datagram socket and binds it to any available port on the local
host.

 DatagramSocket(DatagramSocketImpl impl)
 Creates an unbound datagram socket with the specified DatagramSocketImpl.

 DatagramSocket(int port)
 Constructs a datagram socket and binds it to the specified port on the local

host.

 DatagramSocket(int port, InetAddress iaddr)
 Creates a datagram socket, bound to the specified local address.

 DatagramSocket(SocketAddress bindaddr)
 Creates a datagram socket, bound to the specified local socket address.

DatagramSocket Class – operational Methods

 Operational (void) Methods
 bind(SocketAddress addr)
 connect(InetAddress address, int port)
 connect(SocketAddress addr)
 disconnect()
 receive(DatagramPacket p)
 send(DatagramPacket p)
 close()

DatagramSocket Class – getter methods

Getter Methods:

DatagramChannel getChannel()

InetAddress getInetAddress()

boolean getBroadcast()

InetAddress getLocalAddress()

int getLocalPort()

SocketAddress getLocalSocketAddress()

SocketAddress getRemoteSocketAddress()

int getPort()

int getReceiveBufferSize()

int getSendBufferSize()

boolean getReuseAddress()

int getSoTimeout()

int getTrafficClass()

DatagramSocket Class – setter methods

Setter Methods:

void setBroadcast(boolean on)

static void setDatagramSocketImplFactory
(DatagramSocketImplFactory fac)

void serReceiveBufferSize(int size)

void setReuseAddress(boolean on)

void setSevdBufferSize(int size)

void setSoTimeout(int timeout)

void setTrafficClass(int tc)

DatagramSocket Class – test methods

Test Methods:

boolean isBound()

boolean isClosed()

boolean isConnected()

URL Class

 RFC 2396
 essentially a “pointer” to a resource on the World

Wide Web
 different services use slightly different formats

 file://ftp.yoyodyne.com/pub/files/foobar.txt
 http://www.yahoo.com/index.html
 ftp://useracct@someftpserver.com
 news:rec.gardening
 gopher://gopher.banzai.edu:1234/

URL Class - Constructors
 URL(String spec)

 Creates a URL object from the String representation.

 URL(String protocol, String host, int port, String file)

 Creates a URL object from the specified protocol, host, port number, and file.

 URL(String protocol, String host, int port, String file,
URLStreamHandler handler)

 Creates a URL object from the specified protocol, host, port number, file, and
handler.

 URL(String protocol, String host, String file)

 Creates a URL from the specified protocol name, host name, and file name.

 URL(URL context, String spec)
 Creates a URL by parsing the given spec within a specified context

 URL(URL context, String spec, URLStreamHandler handler)

 Creates a URL by parsing the given spec with the specified handler within a
specified context.

URL Class - Methods
Getters

String getAuthority()

Object getContent()

Object getContent(Classes[] classes)

int getDefaultPort()

String getFile()

String getHost()

String getPath()

int getPort()

String getProtocol()

String getQuery()

String getRef()

String getUserInfo()

URL Class - Methods
Setters

set(String protocol, String host, int port, String file, String ref)

set(String protocol, String host, int port, String authority, String userInfo, String path,
String query,

String ref)

setURLStreamHandlerFactory(URLStreamHandlerFactory fac)

URL Class – Utility methods
int hashCode()

URLConnection openConnection()

InputStream openStream()

boolean sameFile(URL other)

String toExternalForm()

String toString()

boolean equals(Object obj)

ServerSocket
 Used as the main connection point for some service

you wish to provide.
 Once created, it listens for connection requests then

queues the request for disposition
 On Unix/Linux you must be root to use

ServerSocket – Life cycle
 A new ServerSocket is created on a particular port using a

ServerSocket() constructor.
 The ServerSocket listens for incoming connection attempts on that

port using its accept() method. accept() blocks until a client
attempts to make a connection, at which point accept() returns a
Socket object connecting the client and the server.

 Depending on the type of server, either the Socket's
getInputStream() method, getOutputStream() method, or both
are called to get input and output streams that communicate with
the client.

 The server and the client interact according to an agreed-upon
protocol until it is time to close the connection.

 The server, the client, or both close the connection.
 The server returns to step 2 and waits for the next connection.

ServerSockets - threads
 Simultaneous requests are held in a queue, as each request is removed

from the queue and processed new connections requests can be added
to the queue. Connection requests received while the queue is full will
be blocked.
 Some clients use multiple retries in this case as queue space will usually open up

pretty quickly.

 For simple protocols (DayTime) the queue can usually handle all of the
requests without problem

 For more complex protocols (HTTP) use a thread to process each
connection. Threads have less overhead than spawning an entire child
process.

ServerSocket - Constructors
 public ServerSocket(int port) throws IOException, BindException

 public ServerSocket(int port, int queueLength) throws IOException,
BindException

 public ServerSocket(int port, int queueLength, InetAddress
bindAddress) throws IOException

ServerSocket – methods
 accept() – accepts a connection request and creates a

socket to the remote user
 close() – close the server socket and wait for next

connection request

ServerSocket - example
ServerSocket server = new ServerSocket(5776);
while (true)

{ Socket connection = server.accept();
OutputStreamWriter out =

new
OutputStreamWriter(connection.getOutputStream());

out.write("You've connected to this server. Bye-bye
now.\r\n");

connection.close();
}

Server Sockets - problems
 You are not root
 Port is already in use

Proxy Servers
 Part of an overall Firewall strategy
 Sits between the local network and the external network

 Originally used primarily as a caching strategy to minimize outgoing URL
requests and increase perceived browser performance

 Primary mission is now to insure anonymity of internal users
 Still used for caching of frequently requested files
 Also used for content filtering

 Acts as a go-between, submitting your requests to the external network
 Requests are translated from your IP address to the Proxy’s IP address
 E-mail addresses of internal users are removed from request headers
 Cause an actual break in the flow of communications

Security Advantages
 Terminates the TCP connection before relaying to target host (in and out)

 Hide internal clients from external network

 Blocking of dangerous URLs

 Filter dangerous content

 Check consistency of retrieved content

 Eliminate need for transport layer routing between networks

 Single point of access, control and logging

TCP Connection Termination
 Both the outgoing and incoming TCP connections are terminated
 prevents a hacker from hijacking a stale connection on a service

that is being proxied
 ex . HTTP page request

User Proxy Server

request
packet

request packet’

response packet’response
packet

Connection left open until
the proxy closes it after
receiving response packet
and sending it back to user

Connection only left open
until server closes the
connection after sending the
response packet

TCP Connection Termination
 Transport layer packets don’t need to be routed because the entire

request must be regenerated
 Prevents transport layer exploits

 source routing
 fragmentation
 several DoS attacks

 Since some protocols don’t have proxies available many admins will
enable routing , this alleviates any benefit gained

 Most good proxy servers will allow you to create generic proxies using
SOCKS or the redir utility

Performance Aspects
 Caching

 By keeping local copies of frequently accessed file the proxy can serve those
files back to a requesting browser without going to the external site each
time, this dramatically improves the performance seen by the end user

 Only makes sense to implement this at the ISP rather than the small
business level because of the number of pages available

 Because of dynamic content many pages are invalidated in the cache right
away

 Load balancing
 A proxy can be used in a reverse direction to balance the load amongst a set

of identical servers (servers inside the firewall and users outside)
 Used especially with web dynamic content (.asp, .php,.cfm,.jsp)

Proxy Liabilities
 Single point of failure

 if the proxy dies , no one can get to the external network

 Client software must usually be designed to use a proxy

 Proxies must exist for each service

 Doesn’t protect the OS
 proxies run at the application level

 Usually optimized for performance rather than security
 WINGATE was installed to be easy to configure; opened a winsock

proxy to the external interface, which let hackers essentially hijack the
machine

 Create a service bottleneck
 solved via parallelism (more proxies, and load balance)

Transparent / Opaque
 Transparent – both parties (local/remote) are unaware that the

connection is being proxied
 Zorp - application layer proxy is transparent

 Opaque – the local party must configure client software to use the
proxy
 client software must be proxy-aware software
 Netscape proxy server is opaque

 With all of the things modern firewalls can do in the area of redirection
you could configure the firewall to redirect all http requests to a proxy
 no user configuration required (transparent)

Circuit Level Proxies
 Since some protocols require a real connection between the

client and server, a regular proxy can’t be used
 Windows Media Player, Internet Relay Chat (IRC), or Telnet

 Circuit-level proxy servers were devised to simplify matters.
 Instead of operating at the Application layer, they work as a "shim" between

the Application layer and the Transport layer, monitoring TCP handshaking
between packets from trusted clients or servers to untrusted hosts, and vice
versa. The proxy server is still an intermediary between the two parties, but
this time it establishes a virtual circuit between them.

 By using SOCKS (RFC 1928) this can be done
 SOCKS defines a cross-platform standard for accessing circuit-level proxies
 SOCKS Version 5 also supports both username/password (RFC 1929) and API-

based (RFC 1961) authentication. It also supports both public and private key
encryption.

 SOCKS 5 is capable of solving this problem by establishing TCP connections
and then using these to relay UDP data.

SOCKS based Proxying
 RFC 1928
 Not a true application layer proxy
 SOCKS protocol provides a framework for developing secure

communications by easily integrating other security
technologies

 SOCKS includes two components
 SOCKS server

 implemented at the application layer

 SOCKS client
 implemented between the application and transport layers

 The basic purpose of the protocol is to enable hosts on one
side of a SOCKS server to gain access to hosts on the other
side of a SOCKS Server, without requiring direct IP-
reachability.

 Copies packet payloads through the proxy

Socks Architecture

Socks Functionality

What is JDBC?
 “An API that lets you access virtually any tabular data

source from the Java programming language”
 JDBC Data Access API – JDBC Technology Homepage

 What’s an API?
 See J2SE documentation

 What’s a tabular data source?
 “… access virtually any data source, from relational

databases to spreadsheets and flat files.”
 JDBC Documentation

 We’ll focus on accessing Oracle databases

General Architecture
 What design pattern is

implied in this architecture?
 What does it buy for us?
 Why is this architecture also

multi-tiered?

Basic steps to use
a database in Java
 1.Establish a connection
 2.Create JDBC Statements
 3.Execute SQL Statements
 4.GET ResultSet
 5.Close connections

1. Establish a connection
 import java.sql.*;
 Load the vendor specific driver

 Class.forName("oracle.jdbc.driver.OracleDriver");
 What do you think this statement does, and how?
 Dynamically loads a driver class, for Oracle database

 Make the connection
 Connection con = DriverManager.getConnection(

"jdbc:oracle:thin:@oracle-prod:1521:OPROD",
username, passwd);
 What do you think this statement does?
 Establishes connection to database by obtaining

a Connection object

2. Create JDBC statement(s)
 Statement stmt = con.createStatement() ;
 Creates a Statement object for sending SQL statements to

the database

Executing SQL Statements
 String createLehigh = "Create table Lehigh " +

"(SSN Integer not null, Name VARCHAR(32), " +
"Marks Integer)";
stmt.executeUpdate(createLehigh);
//What does this statement do?

 String insertLehigh = "Insert into Lehigh values“
+ "(123456789,abc,100)";
stmt.executeUpdate(insertLehigh);

Get ResultSet
String queryLehigh = "select * from Lehigh";

ResultSet rs = Stmt.executeQuery(queryLehigh);
//What does this statement do?

while (rs.next()) {
int ssn = rs.getInt("SSN");
String name = rs.getString("NAME");
int marks = rs.getInt("MARKS");

}

Close connection
 stmt.close();
 con.close();

Transactions and JDBC
 JDBC allows SQL statements to be grouped together into a single

transaction
 Transaction control is performed by the Connection object, default

mode is auto-commit, I.e., each sql statement is treated as a
transaction

 We can turn off the auto-commit mode with
con.setAutoCommit(false);

 And turn it back on with con.setAutoCommit(true);
 Once auto-commit is off, no SQL statement will be committed until

an explicit is invoked con.commit();
 At this point all changes done by the SQL statements will be made

permanent in the database.

Handling Errors with Exceptions
 Programs should recover and leave the database in a

consistent state.
 If a statement in the try block throws an exception or

warning, it can be caught in one of the corresponding
catch statements

 How might a finally {…} block be helpful here?
 E.g., you could rollback your transaction in a

catch { …} block or close database connection and free
database related resources in finally {…} block

Another way to access database
(JDBC-ODBC)

What’s a bit different
about this
architecture?

Why add yet
another layer?

Sample program
import java.sql.*;
class Test {

public static void main(String[] args) {
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); //dynamic loading of driver
String filename = "c:/db1.mdb"; //Location of an Access database
String database = "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=";
database+= filename.trim() + ";DriverID=22;READONLY=true}"; //add on to end
Connection con = DriverManager.getConnection(database ,"","");
Statement s = con.createStatement();
s.execute("create table TEST12345 (firstcolumn integer)");
s.execute("insert into TEST12345 values(1)");
s.execute("select firstcolumn from TEST12345");

Sample program(cont)
ResultSet rs = s.getResultSet();
if (rs != null) // if rs == null, then there is no ResultSet to view
while (rs.next()) // this will step through our data row-by-row
{ /* the next line will get the first column in our current row's ResultSet

as a String (getString(columnNumber)) and output it to the screen */
System.out.println("Data from column_name: " + rs.getString(1));

}
s.close(); // close Statement to let the database know we're done with it
con.close(); //close connection

}
catch (Exception err) { System.out.println("ERROR: " + err); }

}
}

Mapping types JDBC - Java

JDBC 2 – Scrollable Result Set
…
Statement stmt =
con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

String query = “select students from class where type=‘not sleeping’ “;
ResultSet rs = stmt.executeQuery(query);

rs.previous(); / / go back in the RS (not possible in JDBC 1…)
rs.relative(-5); / / go 5 records back
rs.relative(7); / / go 7 records forward
rs.absolute(100); / / go to 100th record
…

JDBC 2 – Updateable ResultSet
…
Statement stmt =
con.createStatement(ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_UPDATABLE);
String query = " select students, grade from class

where type=‘really listening this presentation’ “;
ResultSet rs = stmt.executeQuery(query);
…
while (rs.next())
{

int grade = rs.getInt(“grade”);
rs.updateInt(“grade”, grade+10);
rs.updateRow();

}

Metadata from DB
 A Connection's database is able

to provide schema information
describing its tables,
its supported SQL grammar,
its stored procedures
the capabilities of this connection, and so on
 What is a stored procedure?
 Group of SQL statements that form a logical unit and

perform a particular task
This information is made available through

a DatabaseMetaData object.

Metadata from DB - example
…
Connection con = …. ;

DatabaseMetaData dbmd = con.getMetaData();

String catalog = null;
String schema = null;
String table = “sys%”;
String[] types = null;

ResultSet rs =
dbmd.getTables(catalog , schema , table , types);

…

JDBC – Metadata from RS
public static void printRS(ResultSet rs) throws SQLException
{

ResultSetMetaData md = rs.getMetaData();
// get number of columns
int nCols = md.getColumnCount();
// print column names
for(int i=1; i < nCols; ++i)

System.out.print(md.getColumnName(i)+",");
/ / output resultset

while (rs.next())
{ for(int i=1; i < nCols; ++i)

System.out.print(rs.getString(i)+",");
System.out.println(rs.getString(nCols));

}
}

JDBC and beyond
 (JNDI) Java Naming and Directory Interface

 API for network-wide sharing of information about users,
machines, networks, services, and applications

 Preserves Java’s object model
 (JDO) Java Data Object

 Models persistence of objects, using RDBMS as repository
 Save, load objects from RDBMS

 (SQLJ) Embedded SQL in Java
 Standardized and optimized by Sybase, Oracle and IBM
 Java extended with directives: # sql
 SQL routines can invoke Java methods
 Maps SQL types to Java classes

SQLJ
// SQLJ
int n;
#sql { INSERT INTO emp VALUES (:n)};

// vs. straight JDBC
int n;
Statement stmt = conn.prepareStatement

(“INSERT INTO emp VALUES (?)”);
stmt.setInt(1,n);
stmt.execute ();
stmt.close();

Client-Server Communication
 Sockets
 Remote Procedure Calls
 Remote Method Invocation (Java)

Sockets
 A socket is defined as an endpoint for communication.
 Concatenation of IP address and port
 The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8
 Communication consists between a pair of sockets.
 Considered a low-level form of communication between

distributed processes.
 Sockets allow only an unstructured stream of bytes to be exchanged.

It is the responsibility of the client or server application to impose a
structure on the data.

Socket Communication

Remote Procedure Calls
 Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems.
 Stub – client-side proxy for the actual procedure on the

server. Server has a similar stub as well.
 The client-side stub locates the server and marshals the

parameters.
 The server-side stub receives this message, unpacks the

marshaled parameters, and performs the procedure on the
server.

 External data representation (XDR) I.e most-significant
(big-endian), least-significant(little-endian)

Execution of RPC

Remote Method Invocation
 Remote Method Invocation (RMI) is a Java mechanism

similar to RPCs.
 RMI allows a Java program on one machine to invoke a

method on a remote object.

Marshalling Parameters

Remote Method Invocation
 RMI and RPC differs in two ways:
1. RPCs support procedural programming whereby only remote

procedures or functions may be called. RMI is object based: It
supports invocation of methods on remote objects.

2. The parameters to remote procedures are ordinary data
structures in RPC; with RMI it is possible to pass objects as
parameters to remote methods.

 If the marshaled parameters are local (non remote) objects,
they are passed by copy using a technique known as object
serialization.
 Object serialization allowed the state of an object to be

written toa byte stream.

Introduction to RMI
 Remote Method Invocation (RMI)

 Allows remote method calls
 Objects in different programs can communicate
 Method calls appear same as those in same program

 Based on Remote Procedure Calls (RPC)
 Developed in 1980's
 Allows procedural program (like C) to call function on another

computer
 Performs networking and marshalling of data (packaging arguments

and return values)
 Not compatible with objects
 Interface Definition Language required - describe functions

 RMI is Java's implementation of RPC

Introduction to RMI
 RMI

 Register method as remotely accessible
 Client can look up method and receive a reference
 Use reference to call method
 Syntax same as a normal method call

 Marshalling of data
 Can transfer objects as well
 Class ObjectOutputStream converts Serializable object into

stream of bytes
 Transmit across network

 Class ObjectInputStream reconstructs object
 No Interface Definition Language needed

 Use Java's own interface

Defining the Remote Interface
 First step

 Define remote interface that describes remote
methods
 Client calls remote methods, server implements them

 To create a remote interface
 Define interface that extends interface Remote

(java.rmi)
 Tagging interface - no methods to define
 An object of a class that implements interface Remote

directly or indirectly is a remote object and can be accesses
from any JVM.

 Each method in Remote interface must throw
RemoteException
 Potential network errors

Defining the Remote Interface
 Interface TemperatureServer

 Extends Remote
 Describes method getWeatherInfo

Implementing the Remote
Interface
 Define TemperatureServerImpl

 Implements Remote interface TemperatureServer
 Client interacts with TemperatureServerImpl

object
 Uses array of WeatherInfo objects to store data

 Copy sent to client when calls getWeatherInfo

Implementing the Remote
Interface

 UnicastRemoteObject
 Provides functionality for remote objects
 Constructor exports object so it can receive remote calls

 Wait for client on anonymous port number

 Subclass constructors must throw RemoteExceptions

 URL object
 Contains URL for Traveler's Forecast web page
 Throws MalformedURLException

18 public class TemperatureServerImpl extends UnicastRemoteObject

19 implements TemperatureServer {

22 public TemperatureServerImpl() throws RemoteException

37 URL url = new URL(

38 "http://iwin.nws.noaa.gov/iwin/us/traveler.html");

Implementing the Remote
Interface

 Open connection to file specified by URL
 Method openStream (class URL)

 Opens network connection using Http protocol
 If successful, InputStream object returned (else IOException)

 InputStreamReader
 Translates bytes to Unicode characters

 BufferedReader
 Buffers characters
 Method readLine

 Returns one line as a String

40 BufferedReader in =

41 new BufferedReader(

42 new InputStreamReader(url.openStream()));

Implementing the Remote
Interface

 Sentinel String to find relevant part of HTML code
 readLine until sentinel found

 A string used as column head
 Second "WEA HI/LO" is for next day, we do not use

 Locate column head and get first city's info

44 String separator = "</PRE><HR>
<PRE>";

47 while (!in.readLine().startsWith(separator))
48 ; // do nothing

51 String s1 =
52 "CITY WEA HI/LO WEA HI/LO";

66 inputLine = in.readLine(); // get first city's info

Implementing the Remote
Interface

 WeatherInfo objects
 City name, temperature, description of weather

 Method substring to extract data from line
 Store all WeatherInfo objects in a Vector

 Store data in WeatherInfo array
 elementAt returns Object (must be cast)

 Close connection

70 WeatherInfo w = new WeatherInfo(
71 inputLine.substring(0, 16),
72 inputLine.substring(16, 22),
73 inputLine.substring(23, 29));
75 cityVector.addElement(w); // add to Vector

84 weatherInformation[i] =

85 (WeatherInfo) cityVector.elementAt(i);

88 in.close(); // close connection to NWS server

Implementing the Remote
Interface

 Name of server object
 Used by clients to connect
 //host:port/remoteObjectName

 host - computer running registry for remote objects
 Where remote object executes

 port - port number of registry on host (1099 default)
 remoteObjectName - client uses to locate object

 Registry managed by rmiregistry (located at host and
port)
 Remote objects register with it, clients use it to locate service
 localhost (same computer)

 Same as IP 127.0.0.1

116 String serverObjectName = "//localhost/TempServer";

Implementing the Remote
Interface

 static method rebind (class Naming)
 Binds object to rmiregistry
 Named //localhost/TempServer

 Name used by client
 rebind replaces any previous objects with same name

 Method bind does not

117 Naming.rebind(serverObjectName, temp);

112 TemperatureServerImpl temp =

113 new TemperatureServerImpl();

116 String serverObjectName = "//localhost/TempServer";

Define the client
 Next step

 Client code to get weather info from
TemperatureServerImpl

 Calls getWeatherInfo through RMI
 Graphically display weather info

 Class WeatherItem (extends JLabel) stores info about
each city

 Display name, High/low, and image (depending on
conditions)

Define the client

 Can specify IP address at command line (more later)

 static method lookup (class Naming)
 Returns reference to Remote object

 Cast to TemperatureServer

 Reference may be used as normal
 Only difference that copy of array returned

22 private void getRemoteTemp(String ip)
26 String serverObjectName = "//" + ip + "/TempServer";

30 TemperatureServer mytemp = (TemperatureServer)

31 Naming.lookup(serverObjectName);

34 WeatherInfo weatherInfo[] = mytemp.getWeatherInfo();

Define the client
 Add WeatherItems

 Initialize with WeatherInfo

 main
 Passes command line argument (ip) to constructor
 localhost default

40 JPanel p = new JPanel();
50 for (int i = 0; i < w.length; i++) {
51 w[i] = new WeatherItem(weatherInfo[i]
);52 p.add(w[i]);
53 }

68 public static void main(String args[])

69 {

70 TemperatureClient gt = null;

74 if (args.length == 0)
75 gt = new TemperatureClient("localhost");
76 else
77 gt = new TemperatureClient(args[0]);

Define the client
 Class WeatherItem

 extends JLabel
 static initializer block

 For complex initialization of static variables
 backgroundImage - ImageIcon, has background
 weatherImages - ImageIcon array, holds weather images

18 static {

19 backgroundImage = new ImageIcon("images/back.jpg");

20 weatherImages =

21 new ImageIcon[weatherImageNames.length];

22

23 for (int i = 0; i < weatherImageNames.length; ++i)

24 weatherImages[i] = new ImageIcon(

25 "images/" + weatherImageNames[i] + ".jpg");

26 }

Define the client
 Array of descriptions and matching array of images

 weatherConditions and weatherImages

 Tests WeatherInfo object, loads proper image

35 weatherInfo = w;
38 for (int i = 0; i < weatherConditions.length;
++i) 39 if (weatherConditions[i].equals(
40 weatherInfo.getDescription().trim()))
{41 weather = weatherImages[i];

32 public WeatherItem(WeatherInfo w)

Compile and Execute the Server
and the Client
 Build and execute application

 All pieces in place
 Compile classes with javac
 Remote server class (TemperatureServerImpl)

compiled with rmic compiler
 Makes a stub class - allows client to access remote methods

and server to provide its services
 Gets remote method calls, passes to RMI system, which

performs networking
 rmic TemperatureServerImpl

Compile and Execute the Server
and the Client
 Start rmiregistry

 Type rmiregistry at command window
 No text in response

Compile and Execute the Server
and the Client
 Must bind remote server object

 Run TemperatureServerImpl application
java TemperatureServerImpl

 Superclass UnicastRemoteObject
 Constructor exports remote object
 main binds object to rmiregistry
 rmiregistry provides host and port number to clients

Compile and Execute the Server
and the Client
 Execute TemperatureClient

 java TemperatureClient
 If server on different machine, specify IP on command

line
java TemperatureClient 192.168.150.4

 Result on next slide

Program Output

Introduction
 Networking

 Massive, complex topic
 Java networking in several packages

 java.net
 Socket based communications

 View networking as streams of data
 Reading/writing to socket like reading/writing to file

 Packet based communications
 Transmit packets of information.

 Remote Method Invocation (RMI)
 Objects in different Java Virtual Machines can

communicate

Introduction
 Client-server relationship

 Client request action
 Server performs action, responds to client
 This view foundation of servlets

 Highest-level view of networking
 Servlet extends functionality of server

 Useful for database-intensive applications
 Thin clients - little client-side support needed
 Server controls database access

 Logic code written once, on server

Overview of Servlet Technology
 Servlets

 Analog to applets
 Execute on server's machine, supported by most web

servers

 Demonstrate communication via HTTP protocol
 Client sends HTTP request
 Server receives request, servlets process it
 Results returned (HTML document, images, binary data)

The Servlet API
 Servlet interface

 Implemented by all servlets
 Many methods invoked automatically by server

 Similar to applets (paint, init, start, etc.)
 abstract classes that implement Servlet

 GenericServlet (javax.servlet)
 HTTPServlet (javax.servlet.http)

 Examples in chapter extend HTTPServlet
 Methods

 void init(ServletConfig config)
 Automatically called, argument provided

The Servlet API
 Methods

 ServletConfig getServletConfig()
 Returns reference to object, gives access to config info

 void service (ServletRequest request,
ServletResponse response)
 Key method in all servlets
 Provide access to input and output streams

 Read from and send to client

 void destroy()
 Cleanup method, called when servlet exiting

Life Cycle of Servlet

init(ServletConfig);

service(ServletRequest,
ServletResponse);

destroy();

servlet

GenericServlet HttpServlet

doGet(HttpServletRequest,
HttpServletResponse);

doPost(HttpServletRequest,
HttpServletResponse);

…….

HttpServlet Class
 HttpServlet

 Base class for web-based servlets
 Overrides method service

 Request methods:
 GET - retrieve HTML documents or image
 POST - send server data from HTML form

 Methods doGet and doPost respond to GET and POST
 Called by service
 Receive HttpServletRequest and
HttpServletResponse (return void) objects

HttpServletRequest
Interface
 HttpServletRequest interface

 Object passed to doGet and doPost
 Extends ServletRequest

 Methods
 String getParameter(String name)

 Returns value of parameter name (part of GET or POST)
 Enumeration getParameterNames()

 Returns names of parameters (POST)
 String[] getParameterValues(String name)

 Returns array of strings containing values of a parameter
 Cookie[] getCookies()

 Returns array of Cookie objects, can be used to identify client

HttpServletResponse
Interface

 HttpServletResponse
 Object passed to doGet and doPost
 Extends ServletResponse

 Methods
 void addCookie(Cookie cookie)

 Add Cookie to header of response to client
 ServletOutputStream getOutputStream()

 Gets byte-based output stream, send binary data to client
 PrintWriter getWriter()

 Gets character-based output stream, send text to client
 void setContentType(String type)

 Specify MIME type of the response (Multipurpose Internet Mail
Extensions)

 MIME type “text/html” indicates that response is HTML document.
 Helps display data

Handling HTTP GET Requests
 HTTP GET requests

 Usually gets content of specified URL
 Usually HTML document (web page)

 Example servlet
 Handles HTTP GET requests
 User clicks Get Page button in HTML document

 GET request sent to servlet HTTPGetServlet

 Servlet dynamically creates HTML document displaying
"Welcome to Servlets!"

Handling HTTP GET Requests

 Use data types from javax.servlet and
javax.servlet.http

 HttpServlet has useful methods, inherit from it

 Method doGet
 Responds to GET requests
 Default action: BAD_REQUEST error (file not found)
 Override for custom GET processing
 Arguments represent client request and server response

3 import javax.servlet.*;

4 import javax.servlet.http.*;

7 public class HTTPGetServlet extends HttpServlet {

8 public void doGet(HttpServletRequest request,

9 HttpServletResponse response)

10 throws ServletException, IOException

Handling HTTP GET Requests

 setContentType
 Specify content
 text/html for HTML documents

 getWriter
 Returns PrintWriter object, can send text to client
 getOutputStream to send binary data (returns
ServletOutputStream object)

14 response.setContentType("text/html"); // content type

12 PrintWriter output;

15 output = response.getWriter(); // get writer

Handling HTTP GET Requests

 Lines 19-23 create HTML document

 println sends response to client
 close terminates output stream

 Flushes buffer, sends info to client

19 buf.append("<HTML><HEAD><TITLE>\n");

20 buf.append("A Simple Servlet Example\n");

21 buf.append("</TITLE></HEAD><BODY>\n");

22 buf.append("<H1>Welcome to Servlets!</H1>\n");

23 buf.append("</BODY></HTML>");

24 output.println(buf.toString());
25 output.close(); // close PrintWriter stream

Handling HTTP GET Requests
 Running servlets

 Must be running on a server
 Check documentation for how to install servlets
 Tomcat web server
 Apache Tomcat

Handling HTTP GET Requests
 Port number

 Where server waits for client (handshake point)
 Client must specify proper port number

 Integers 1 - 65535, 1024 and below usually reserved

 Well-known port numbers
 Web servers - port 80 default
 JSDK/Apache Tomcat 4.0 Webserver- port 8080

 Change in default.cfg (server.port=8080)

Handling HTTP POST Requests
 HTTP POST

 Used to post data to server-side form handler (i.e.
surveys)

 Both GET and POST can supply parameters
 Example servlet

 Survey
 Store results in file on server

 User selects radio button, presses Submit
 Browser sends POST request to servlet

 Servlet updates responses
 Displays cumulative results

Session Tracking
 Web sites

 Many have custom web pages/functionality
 Custom home pages - http://my.yahoo.com/
 Shopping carts
 Marketing

 HTTP protocol does not support persistent information
 Cannot distinguish clients

 Distinguishing clients
 Cookies
 Session Tracking

Cookies
 Cookies

 Small files that store information on client's computer
 Servlet can check previous cookies for information

 Header
 In every HTTP client-server interaction
 Contains information about request (GET or POST) and

cookies stored on client machine
 Response header includes cookies servers wants to store

 Age
 Cookies have a lifespan
 Can set maximum age

 Cookies can expire and are deleted

Cookies
 Example

 Demonstrate cookies
 Servlet handles both POST and GET requests
 User selects programming language (radio buttons)

 POST - Add cookie containing language, return HTML page
 GET - Browser sends cookies to servlet

 Servlet returns HTML document with recommended books

 Two separate HTML files
 One invokes POST, the other GET
 Same ACTION - invoke same servlet

Cookies

 Method doPost
 Get language selection

 Cookie constructor
 Cookie (name, value)
 getISBN is utility method
 setMaxAge(seconds) - deleted when expire

14 public void doPost(HttpServletRequest request,

15 HttpServletResponse response)

19 String language = request.getParameter("lang");

21 Cookie c = new Cookie(language, getISBN(language));

22 c.setMaxAge(120); // seconds until cookie removed

Cookies

 Add cookie to client response
 Part of HTTP header, must come first
 Then HTML document sent to client

 Method doGet
 getCookies

 Returns array of Cookies

23 response.addCookie(c); // must precede getWriter

41 public void doGet(HttpServletRequest request,

42 HttpServletResponse response)

46 Cookie cookies[];
48 cookies = request.getCookies(); // get client's cookies

Cookies

 Cookie methods
 getName, getValue

 Used to determine recommended book
 If cookie has expired, does not execute

57 if (cookies != null) {
62 output.println(
63 cookies[i].getName() + " How to Program. " +
64 "ISBN#: " + cookies[i].getValue() + "
");

Session Tracking with HttpSession
 HttpSession (javax.servlet.http)

 Alternative to cookies
 Data available until browsing ends

 Methods
 Creation

 getSession(createNew)
 Class HttpServletRequest
 Returns client's previous HttpSession object
 createNew - if true, creates new HttpSession object if

does not exist

23 HttpSession session = request.getSession(true);

Session Tracking with HttpSession

 putvalue(name, value)
 Adds a name/value pair to object

 getValueNames()
 Returns array of Strings with names

 getValue(name)
 Returns value of name as an Object
 Cast to proper type

26 session.putValue(language, getISBN(language));

58 valueNames = session.getValueNames();
73 for (int i = 0; i < valueNames.length; i++) {

74 String value =

75 (String) session.getValue(valueNames[i]);

Session Tracking with
HttpSession
 Redo previous example

 Use HttpSession instead of cookies
 Use same HTML files as before

 Change ACTION URL to new servlet

Definition: What is a Bean?
 Definition: A Java Bean is a reusable software

component that can be visually manipulated in
builder tools.

Introduction
 JavaBeans (beans)

 Reusable software component model
 Assemble predefined components

 Create powerful applications and applets
 Graphical programming and design environments

 Builder tools
 Support beans, reuse and integrate components

 Component assembler
 Programmer who use defined components

 Work on design of GUI and functionality
 Do not need to know implementation

 Just need to know services

Introduction
 Example of bean concept

 Have animation bean
 Want two buttons, start and stop

 With beans, can "hook up" buttons to startAnimation
and stopAnimation methods
 When pressed, method called
 Builder tool does work

 Use previously defined, reusable components
 Little or no code must be written

 Component assembler can "connect the dots"
 More info about beans at

 http://java.sun.com/beans/

BeanBox Overview
 BeanBox installation

 Free utility from JavaBeans Development Kit (BDK)
http://java.sun.com/beans/software/index.html

 Windows, Solaris, and platform independent versions
 In Windows version, minor bug

 Do not install in directory with spaces in name
 To run, go to install directory, beanbox subdirectory, load
run.bat (or run.sh)

 BeanBox test container for JavaBeans
 Preview how bean will be displayed
 Not meant to be robust development tool

BeanBox Overview
 Use screen captures from Windows

 Start application, following appears:

ToolBox has 16 sample
JavaBeans BeanBox window tests beans.

Background currently selected
(dashed box).

Properties
customizes selected
bean.

Method Tracer displays
debugging messages (not
discussed)

BeanBox Overview
 Initially, background selected

 Customize in Properties box

BeanBox Overview
 Now, add JavaBean in BeanBox window

 Click ExplicitButton bean in ToolBox window
 Functions as a JButton

 Click crosshair where center of button should appear
 Change label to "Start the Animation"

BeanBox Overview
 Select button (if not selected) and move to corner

 Position mouse on edges, move cursor appears
 Drag to new location

 Resize button
 Put mouse in corner, resize cursor
 Drag mouse to change size

BeanBox Overview
 Add another button (same steps)

 "Stop the Animation"

 Add animation bean
 In ToolBox, select Juggler and add to BeanBox

 Animation begins immediately

Properties for juggler.

BeanBox Overview
 Now, "hook up" events from buttons

 Start and stop animation
 Edit menu

 Access to events from beans that are an event source (bean can
notify listener)

 Swing GUI components are beans
 Select "Stop the Animation"
 Edit->Events->button push -> actionPerformed

BeanBox Overview
 Line appears from button to mouse

 Target selector - target of event
 Object with method we intend to call
 Connect the dots programming

 Click on Juggler, brings up EventTargetDialog
 Shows public methods
 Select stopJuggling

BeanBox Overview
 Event hookup complete

 Writes new hookup/event adapter class
 Object of class registered as actionListener fro button
 Can click button to stop animation

 Repeat for "Start the Animation" button
 Method startAnimation

BeanBox Overview
 Save as design

 Can reloaded into BeanBox later
 Can have any file extension

 Opening
 Applet beans (like Juggler) begin executing immediately

BeanBox Overview
 Save as Java Applet

 File->Make Applet
 Stores .class file in .jar (Java Archive File)
 Can rename and change directory

BeanBox Overview
 To run applet

 Go to command line, go to directory where applet saved
 Should be .html file, load into appletviewer

 Background not yellow
 BeanBox container not saved as part of applet
 Applet is a container, can hold beans

 Archive property of <applet> tag
 Comma separated list of .jar files used
 .jar files for beans listed
 Source code in AppletName_files directory

Creating a JavaBean: Java Archive
Files and the jar Utility
 Place class in Java Archive file (JAR)

 Create text file manifest.tmp
 Manifest file describes contents of JAR file
 jar utility uses manifest.tmp

 Creates MANIFEST.MF in META-INF directory
 Used by development environments

 Can execute application from JAR file with java
interpreter
 Specify class with main

Creating a JavaBean: Java Archive Files
and the jar Utility

 Manifest file for LogoAnimator
 Specify class with main, runs bean as application

 java -jar LogoAnimator.jar
 Run application from bean
 Interpreter looks at manifest file

 Executes main of Main-Class
java. -cp LogoAnimator.jar jhtp3beans.LogoAnimator
 cp - class path, JAR file to look for classes
 Followed by application class (explicit name, with package)

1 Main-Class: jhtp3beans.LogoAnimator

2

3 Name: jhtp3beans/LogoAnimator.class

4 Java-Bean: True

Creating a JavaBean: Java Archive
Files and the jar Utility

 Name: name of file with bean class (full package and class
name)
 Dots . used in package named replaced with /

 Java-Bean: true - file is a JavaBean
 Possible to have non-JavaBean in JAR file
 Used to support JavaBeans

 Each class separated by blank line
 Java-Bean: immediately follows Name:

1 Main-Class: jhtp3beans.LogoAnimator

2

3 Name: jhtp3beans/LogoAnimator.class

4 Java-Bean: True

Creating a JavaBean: Java Archive
Files and the jar Utility
 Create JAR file

 jar utility at command line
jar cfm LogoAnimator.jar manifest.tmp jhtp3beans*.*

 Options
 c - creating JAR file
 f - indicates next argument is name of file
 m - next argument manifest.tmp file

 Used to create MANIFEST.MF

 Next, list files to be included in JAR file
 Directory structure of JAR file should match manifest.tmp

Creating a JavaBean: Java Archive
Files and the jar Utility
 To confirm files were archived

 jar tvf LogoAnimator.jar

 Options
 t - list table of contents
 v - verbose mode
 f - next argument is JAR file to use

 Execute LogoAnimator application
java -jar LogoAnimator.jar

Adding Beans to the BeanBox
 Using Beans

 LogoAnimator is wrapped in a JAR file as a JavaBean
 Can use in BeanBox

 Two ways to load bean
 Put JAR file in BDK1.1\jars directory

 Loaded into toolbox
 Use File -> LoadJar

Adding Beans to the BeanBox
 To add to design area

 Click bean in ToolBox

 Click crosshair where bean should appear

Adding Beans to the BeanBox
 Properties window

 Shows properties of
LogoAnimator
 Properties inherited from JPanel

Connecting Beans with Events in
the BeanBox
 Connecting Beans with events

 LogoAnimator has methods stopAnimation and
startAnimation

 Connect two ExplicitButtons to LogoAnimator
 Change label
 Edit -> Events -> button push -> actionPerformed

Adding Properties to a JavaBean
 Add animationDelay property

 Control animation speed
 Extend LogoAnimator and create LogoAnimator2
 Read/write property of bean

 Defined as set/get method pair of format:
public void setPropertyName(DataType value)
public DataType getPropertyName()
 Property set and get methods
 If using boolean, use isPropertyName() instead of get

 We use setAnimationDelay and
getAnimationDelay

Adding Properties to a JavaBean
 Properties

 When builder tool examines bean, looks for pairs of
set/get methods
 Introspection
 If found, used as property

 Creating bean
 Must wrap LogoAnimator2 class
 Compile: javac -d . LogoAnimator2.java
 Create manifest.tmp

1 Main-Class: jhtp3beans.LogoAnimator2

2

3 Name: jhtp3beans/LogoAnimator2.class

4 Java-Bean: True

Adding Properties to a JavaBean
 Creating bean

 Package into JAR file
jar cfm LogoAnimator2.jar
manifest.tmp jhtp3beans*.*

 Load LogoAnimator2 bean,
can change
animationDelay property

